Reliability-Based Sensitivity Design of Gear Pairs with Non-Gaussian Random Parameters

Article Preview

Abstract:

Based on reliability design theory, by using the Edgeworth series method, and the sensitivity analysis method, the reliability sensitivity of the cylindrical gear pairs with non-Gaussian random parameters are extensively discussed and a numerical method for reliability sensitivity design is presented. The variation regularities of reliability sensitivity are obtained and the effects of design parameters on reliability of the cylindrical gear pairs are studied. The presented method provides the theoretic basis for reliability design of cylindrical gear pairs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3411-3418

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. M. Al-Shareedah, H. Alawi, Reliability analysis of bevel gears with and without back support [J]. Mechanism and Machine Theory Vol. 22(1) (1987) 13-20.

DOI: 10.1016/0094-114x(87)90071-1

Google Scholar

[2] K. Kazerounian, A. Nedungadi, Redundancy resolution of serial manipulators based on robot dynamics [J]. Mechanism and Machine Theory Vol. 23(4) (1988) 295-303.

DOI: 10.1016/0094-114x(88)90022-5

Google Scholar

[3] X. Q. Peng, G. Liu, L. Y. Wu, G. R. Liu, K. Y. Lam, A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending [J]. Computational Mechanics Vol. 21(3) (1998) 253-261.

DOI: 10.1007/s004660050300

Google Scholar

[4] Q. J. Yang, Fatigue test and reliability design of gears [J]. International Journal of Fatigue Vol. 18(3) (1996) 171-177.

DOI: 10.1016/0142-1123(95)00096-8

Google Scholar

[5] Y. M. Zhang, Q. L. Liu, B. C. Wen, Practical reliability-based design of gear pairs [J]. Mechanism and Machine Theory Vol. 38(12) (2003) 1363-1370.

DOI: 10.1016/s0094-114x(03)00092-2

Google Scholar

[6] S. S. Rao, M. Tjandra, Reliability-based design of automotive transmission systems [J]. Reliability Engineering & System Safety Vol. 46(2) (1994) 159-169.

DOI: 10.1016/0951-8320(94)90133-3

Google Scholar

[7] S. J. Wang, J. H. Lv, Reliability optimum design of NWG-type oil-submerged planetary gear reducer [J]. Key Engineering Materials Vol. 297-300 (2005) 1895-(1900).

DOI: 10.4028/www.scientific.net/kem.297-300.1895

Google Scholar

[8] H. Z. Huang, Z. Q. Sun, M. J. Zuo, Z. G. Tian, Bayesian reliability assessment of gear lifetime under fuzzy environments [J]. Proceedings: Annual Reliability and Maintainability Symposium, (2005) 232-237.

DOI: 10.1109/rams.2005.1408367

Google Scholar

[9] M. Hohenbichler, R. Rackwitz, Sensitivity and importance measures in structural reliability [J]. Civil Engineering Systems Vol. 3(4) (1986) 203-209.

DOI: 10.1080/02630258608970445

Google Scholar

[10] Y. M. Zhang, Q. L. Liu, B. C. Wen, Reliability-based design of automobile components [J]. Proceedings of the Institution of Mechanical Engineers Part D, Journal of Automobile Engineering Vol. 216(D6) (2002) 455-471.

DOI: 10.1243/09544070260137390

Google Scholar

[11] Y. M. Zhang, B. C. Wen , Q. L. Liu, Reliability sensitivity for rotor–stator systems with rubbing [J]. Journal of Sound and Vibration Vol. 259(5) (2003) 1095-1107.

DOI: 10.1006/jsvi.2002.5117

Google Scholar

[12] Y. M. Zhang, X. D. He, Q. L. Liu, B. C. Wen, J. X. Zheng, Reliability sensitivity of automobile components with arbitrary distribution parameters [J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering Vol. 219(2) (2005).

DOI: 10.1243/095440705x5894

Google Scholar

[13] GB3480-83 [S]. Method for calculating load capacity of involute cylindrical gears.

Google Scholar

[14] Editorial Board of Gear Handbook. Handbook of Gear [M]. China Machine Press, (1990) (Beijing,. China).

Google Scholar

[15] Y. G. Zhao, T. Ono, Moment methods for structural reliability [J]. Structural Safety Vol. 23(1) (2001) 47-75.

DOI: 10.1016/s0167-4730(00)00027-8

Google Scholar

[16] Y. M. Zhang, B. C. Wen, Q. L. Liu, First passage of uncertain single degree-of-freedom nonlinear oscillators [J]. Computer Methods in Applied Mechanics and Engineering Vol. 165(4) (1998) 223-231.

DOI: 10.1016/s0045-7825(98)00042-5

Google Scholar

[17] H. Cramer, Mathematical Methods of Statistics [M]. (1964) (Princeton, New Jersey).

Google Scholar