[1]
L. B. Fu et al.: Compact High-Power Tunable-Level Operation of Double Cladding Nd-Doped Fiber Laser,; IEEE Photon. Techno Lett. 17 (2005) 2, 306-308.
DOI: 10.1109/lpt.2004.840034
Google Scholar
[2]
Y. Huo, P. K. Cheo, G. G. King: Modeling and Experiments of Actively Q-Switched Er3+-Yb3+ Codoped Clad-Pumped Fiber Lasers,; IEEE J. Quantum Electron. 41 (2005) 4, 573-580.
DOI: 10.1109/jqe.2005.843603
Google Scholar
[3]
Y. Wang, C. Xu, H. Po: Thermal Effects in Kilowatt Fiber Lasers,; IEEE Photon. Techno. Lett, 16 (2004) 1, 63-65.
DOI: 10.1109/lpt.2003.818913
Google Scholar
[4]
J. Nilsson et al.: High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,; Opt. Fiber Techno. 10 (2004), 5-30.
DOI: 10.1016/j.yofte.2003.07.001
Google Scholar
[5]
S. Calvez et al.: Erbium-Doped Fiber Laser Tuning Using Two Cascaded Unbalanced Mach-Zehnder Interferometers as Intracavity Filter: Numerical Analysis and Experimental Confirmation,; Lightwave Techno. 19 (2001) 6, 893-898.
DOI: 10.1109/50.927524
Google Scholar
[6]
L. Philippe et al.: Experimental study of pump power absorption along rare-earth-doped double clad optical fibres,; Opt. Commun. 218 (2003), 249-254.
DOI: 10.1016/s0030-4018(03)01204-5
Google Scholar
[7]
I. Kelson, A. A. Hardy: Strongly Pumped Fiber Lasers,; IEEE Quantum Electron. 34 (1998) 9, 1570-1577.
DOI: 10.1109/3.709573
Google Scholar
[8]
L. Xiao et al.: An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss,; Opt. Commun. 230 (2004), 401-410.
DOI: 10.1016/j.optcom.2003.11.017
Google Scholar
[9]
J. Chen, X. Zhu, W. Sibbett: Rate-equation studies of erbium-doped fiber lasers with common pump and laser energy bands,; J. Opt. Soc. Am. B. 9 (1992) 10, 1876-1882.
DOI: 10.1364/josab.9.001876
Google Scholar
[10]
G. Hu et al.: Threshold characteristics of linear cavity Yb3+-doped double-clad fiber laser,; Opt. and Laser Techno. 37 (2004), 3-7.
DOI: 10.1016/j.optlastec.2004.02.002
Google Scholar
[11]
J. Chen, X. Zhu, W. Sibbett: Derivation of the threshold pump power of erbium-doped fiber lasers,; Opt. Lett. 17 (1992) 13, 926-928.
DOI: 10.1364/ol.17.000926
Google Scholar
[12]
L. Zhang, Z. Duan, J. Chen: Analytical solutions to rate equations of fiber lasers containing three-energy-level ions,; Opt. commun. 267 (2006), 149-153.
DOI: 10.1016/j.optcom.2006.06.008
Google Scholar
[13]
Z. Qiang, Y. Han, X. Zhang: A New Three-stage Structure for a High-performance L-band Erbium-doped Superfluorescent Fiber Source,; Acta Photonica Sinica. 35 (2006) 5, 701-704 (In Chinese).
Google Scholar
[14]
H. Masuda, A. Takada, K. Aida: Modeling the Gain Degradation of High Concentration Erbium-Doped Fiber Amplifiers by Introducing Inhomogeneous Cooperative Up-Conversion,; IEEE Lightwave Techno. 10 (1992) 12, 1789-1799.
DOI: 10.1109/50.202830
Google Scholar
[15]
E. Yahel, A. Hardy: Modeling and Optimization of Short Er3+-Yb3+ Codoped Fiber Lasers,; IEEE J. Quantum Electron. 39 (2003) 11, 1444-1551.
DOI: 10.1109/jqe.2003.818307
Google Scholar
[16]
E. Desurvire, C. R. Giles, J. R. Simpson: Gain Saturation Effects in High-Speed, Multichannel Erbium-Doped Fiber Amplifiers at λ=1. 53 μm,; IEEE J. Lightwave Technol. 7 (1989) 12, 2095-2104.
DOI: 10.1109/50.41635
Google Scholar
[17]
Q. Yu et al.: A New Method for the Numerical Simulation of Erbium Doped Fiber Amplifiers,; Chinese Journal of Lasers 26 (1999) 7, 585-588 (In Chinese).
Google Scholar