[1]
S. Caporali, A. Fossati, U. Bardi, Oxidative post-treatments for enhanced corrosion resistance of aluminium electrodeposited from ionic liquids, Corros Sci, 52 (2010) 235-241.
DOI: 10.1016/j.corsci.2009.09.009
Google Scholar
[2]
L. Barchi, U. Bardi, S. Caporali, M. Fantini, A. Scrivani, A. Scrivani, Electroplated bright aluminium coatings for anticorrosion and decorative purposes, Prog Org Coat, 67 (2010) 146-151.
DOI: 10.1016/j.porgcoat.2009.10.017
Google Scholar
[3]
G. Yue, S. Zhang, Y. Zhu, X. Lu, S. Li, Z. Li, A promising method for electrodeposition of aluminium on stainless steel in ionic liquid, AlChE J, 55 (2009) 783-796.
DOI: 10.1002/aic.11698
Google Scholar
[4]
R.S.C. Paredes, S.C. Amico, A.S.C.M. d'Oliveira, The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying, Surf Coat Technol, 200 (2006) 3049-3055.
DOI: 10.1016/j.surfcoat.2005.02.200
Google Scholar
[5]
S.J. Pan, W.T. Tsai, I.W. Sun, Electrodeposition of Al-Zn on Magnesium Alloy from ZnCl2-Containing Ionic Liquids, Electrochem Solid-State Lett, 13 (2010) D69-D71.
DOI: 10.1149/1.3447842
Google Scholar
[6]
D. Pradhan, R.G. Reddy, Electrochemical production of Ti-Al alloys using TiCl4-AlCl3-1-butyl-3-methyl imidazolium chloride (BmimCl) electrolytes, Electrochim Acta, 54 (2009) 1874-1880.
DOI: 10.1016/j.electacta.2008.10.022
Google Scholar
[7]
S.S.V. Tatiparti, F. Ebrahimi, Electrodeposition of Al-Mg Alloy Powders, J Electrochem Soc, 155 (2008) D363-D368.
DOI: 10.1149/1.2885016
Google Scholar
[8]
V.V. Namboodiri, R.S. Varma, Solvent-Free Sonochemical Preparation of Ionic Liquids, Org Lett, 4 (2002) 3161-3163.
DOI: 10.1021/ol026608p
Google Scholar
[9]
M. Law, K. Wong, T. Chan, Solvent-free route to ionic liquid precursors using a water-moderated microwave process, Green chemistry, 4 (2002) 328-330.
DOI: 10.1039/b203122a
Google Scholar
[10]
B.M. Khadilkar, G.L. Rebeiro, Microwave-Assisted Synthesis of Room-Temperature Ionic Liquid Precursor in Closed Vessel†, Organic Process Research & Development, 6 (2002) 826-828.
DOI: 10.1021/op025551j
Google Scholar
[11]
G. Yue, X. Lu, Y. Zhu, X. Zhang, S. Zhang, Surface morphology, crystal structure and orientation of aluminium coatings electrodeposited on mild steel in ionic liquid, Chem Eng J, 147 (2009) 79-86.
DOI: 10.1016/j.cej.2008.11.044
Google Scholar
[12]
S. Xing, Y. Li, J. Wu, Y. Yan, Electrochemical methods study on corrosion of 5% Al–Zn alloy-coated steel under thin electrolyte layers, Mater Corros, 61 (2010) 428-431.
DOI: 10.1002/maco.200905313
Google Scholar
[13]
S.J. Pan, W.T. Tsai, J.K. Chang, I.W. Sun, Co-deposition of Al-Zn on AZ91D magnesium alloy in AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid, Electrochim Acta, 55 (2010) 2158-2162.
DOI: 10.1016/j.electacta.2009.11.050
Google Scholar
[14]
J. Zhang, C. Yan, F. Wang, Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts, Appl Surf Sci, 255 (2009) 4926-4932.
DOI: 10.1016/j.apsusc.2008.12.039
Google Scholar
[15]
W.R. Pitner, C.L. Hussey, G.R. Stafford, Electrodeposition of Nickel-Aluminum Alloys from the Aluminum Chloride-1-methyl-3-ethylimidazolium Chloride Room Temperature Molten Salt, J Electrochem Soc, 143 (1996) 130-138.
DOI: 10.1149/1.1836397
Google Scholar
[16]
D. Pradhan, R.G. Reddy, A. Lahiri, Low-Temperature Production of Ti-Al Alloys Using Ionic Liquid Electrolytes: Effect of Process Variables on Current Density, Current Efficiency, and Deposit Morphology, Metallurgical and Materials Transactions B, 40 (2009).
DOI: 10.1007/s11663-008-9214-y
Google Scholar