[1]
M. Sadeghifar, M. Bagheri, and A.A. Jafari, (2010), Multiobjective optimization of orthogonally stiffened cylindrical shells for minimum weight and maximum axial buckling load, Thin-Walled Structures 48, p.979–988.
DOI: 10.1016/j.tws.2010.07.006
Google Scholar
[2]
F. Léné, G. Duvaut, M. Olivier-Mailhé and S. Grihon, (2009), An advanced methodology for optimum design of a composite stiffened cylinder, Composite Structures 91, p.392–397.
DOI: 10.1016/j.compstruct.2009.04.005
Google Scholar
[3]
F.S. Almeida and A.M. Awruch, (2009), Design optimization of composite laminated structures using genetic algorithms and finite element analysis, Composite Structures 88, p.443–454.
DOI: 10.1016/j.compstruct.2008.05.004
Google Scholar
[4]
P.W. Khong, (1999), Optimal design of laminates for maximum buckling resistance and minimum weight,. J Compos Technol Res, 21: 25–32.
DOI: 10.1520/ctr10609j
Google Scholar
[5]
A. Alibeigloo, M. Shakeri and A. Morowat, Optimal stacking sequence of laminated anisotropic cylindrical panel using genetic algorithm, Structural Engineering and Mechanics, Vol. 25, No. 6 (2007) 637-652.
DOI: 10.12989/sem.2007.25.6.637
Google Scholar
[6]
U. Topal, (2009), " Multiobjective optimization of laminated composite cylindrical shells for maximum frequency and buckling load, Materials and Design 30, 2584–2594.
DOI: 10.1016/j.matdes.2008.09.020
Google Scholar
[7]
R.A. Damodar, J. Navin, (2001), Optimal design of grid-stiffened panels and shells with variable curvature,. Compos Struct; 53: 173–80.
Google Scholar
[8]
W. Akl, M. Ruzzene, A. Baz, (2002), "Optimal design of underwater stiffened shells. Struct Multidiscip Optim; 23: 297–310.
DOI: 10.1007/s00158-002-0187-1
Google Scholar
[9]
K. Wang, D. Kelly, S. Dutton, (2002), Multi-objective optimization of composite aerospace structures,. Comput Struct; 57: 141–8.
Google Scholar
[10]
M. Walker, (2001), Multi-objective design of laminated plates for maximum stability using finite element method,. Comput Struct; 54: 389–93.
DOI: 10.1016/s0263-8223(01)00114-3
Google Scholar
[11]
E. Atashpaz-Gargari, C. Lucas, (2007), Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition,. IEEE Congress on Evolutionary Computation. 7. p.4661–4666.
DOI: 10.1109/cec.2007.4425083
Google Scholar
[12]
Zhang, Y, Wang, Y, Peng, Cheng, (2009), Improved Imperialist Competitive Algorithm for Constrained Optimization,. Computer Science-Technology and Applications, IFCSTA.
DOI: 10.1109/ifcsta.2009.57
Google Scholar
[13]
J. R. Vinson, (1993), the behavior of shells composed of isotropic and composite materials, Kluwer academic publishers (book).
Google Scholar
[14]
E. Atashpaz-Gargari, F. Hashemzadeh, R. Rajabioun, and C. Lucas, (2008).
Google Scholar
[15]
R. Rajabioun, E. Atashpaz-Gargari, and C. Lucas, (2008) Colonial Competitive Algorithm as a Tool for Nash Equilibrium Point Achievement, Lecture notes in computer science, 5073, 680-695.
DOI: 10.1007/978-3-540-69848-7_55
Google Scholar
[16]
Rahman, D. H. A., Banks, W. M, and Tooth, A. S., Behaviour of GRP pipes under a variety of load conditions, 6th International Conference on Plastic Pipes, York, March 1985, p.13. 1-13. 6.
Google Scholar