[1]
Y. Kuroe and S. Hayashi, in: Analysis of Bifurcation in Power Electronic Induction Motor Drive Systems [C]. IEEE Power Electronics Specialists Conference, 1989, 923-930.
DOI: 10.1109/pesc.1989.48578
Google Scholar
[2]
N. Hemail, in: Stranger Attractors in Brushless DC Motor [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1994, 41(1): 40-45.
DOI: 10.1109/81.260218
Google Scholar
[3]
J. H. Chen, K. T. Chau, and C. C. Chan, in: Analysis of Chaos in Current-Mode-Controlled DC Drive Systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(2): 67-76.
DOI: 10.1109/41.824127
Google Scholar
[4]
Z. Li, J. B. Park et al, in: Bifurcation and Chaos in a Permanent-Magnet Synchronous Motor [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(3) : 383-387.
DOI: 10.1109/81.989176
Google Scholar
[5]
K. T. Chua and J. H. Chen, in: Modeling, Analysis and Experimentation of Chaos in Switched Reluctance Drive System [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, 50(3) : 712-716.
DOI: 10.1109/tcsi.2003.811030
Google Scholar
[6]
Z. Jing, C. Yu and G. Chen, in: Complex Dynamics in a Permanent Magnet Synchronous Motor Model [J]. Chaos Solitons and Fractals, 2004, 22: 831-848.
DOI: 10.1016/j.chaos.2004.02.054
Google Scholar
[7]
Cao Y. J., in: A Nonlinear Adaptive Approach to Controlling Chaotic Oscillators [J]. Physics Letters A, 2000, 270: 171-176.
DOI: 10.1016/s0375-9601(00)00299-1
Google Scholar
[8]
J. H. Lü, J. A. Lu, in: Controlling Uncertain Lü System Using Linear Feedback [J]. Chaos Solitons and Fractals, 2003, 17: 127-133.
DOI: 10.1016/s0960-0779(02)00456-3
Google Scholar
[9]
M. Y. Chen, D. H. Zhou, and Y. Shang, in: Nonlinear Feedback Control of Lorenz System [J]. Chaos Solitons and Fractals, 2004, 21, 295-304.
DOI: 10.1016/j.chaos.2003.12.066
Google Scholar
[10]
Y. Gao, K. T. Chau, in: Chaotification of PM Sychronous Motor Drives Using Time-Delay Feedback [C]. IEEE Annual Conference of the Industrial Electronics Society, 2002, 2(1): 762-766.
DOI: 10.1109/iecon.2002.1187603
Google Scholar
[11]
Nazzal J. M., Natsheh A. N., in: Chaos Control Using Sliding-Mode Theory [J]. Chaos Solitons and Fractals, 2007, 33: 695-702.
DOI: 10.1016/j.chaos.2006.01.071
Google Scholar
[12]
Yassen M. T., in: Controlling, Synchronization, and Tracking Chaotic Liu System Using Active Backstepping Design [J]. Physics Letters A, 2007, 360: 582-587.
DOI: 10.1016/j.physleta.2006.08.067
Google Scholar
[13]
A. L. Fradkov, R.J. Evans, in: Control of Chaos: Methods and Applications in Engineering [J]. Annual Reviews in Control, 2005, 29: 33-56.
DOI: 10.1016/j.arcontrol.2005.01.001
Google Scholar
[14]
A. Mohammad, K. Arash, and G. Behzad, in: Control of Chaos in Permanent Magnet Synchronous Motor by Using Optimal Lyapunov Exponents Placement [J]. Physics Letters A, 2010, 374, 4226-4230.
DOI: 10.1016/j.physleta.2010.08.047
Google Scholar
[15]
D. Q. Wei, X. S. Luo, B. H. Wang et al, in: Robust Adaptive Dynamic Surface Control of Chaos in Permanent Magnet Synchronous Motor [J]. Physics Letters A, 2007, 363, 71-77.
DOI: 10.1016/j.physleta.2006.10.074
Google Scholar
[16]
A. Tornambe, P. Valigi, in: A Decentralized Controller for the Robust Stabilization of A Class of MIMO Dynamical Systems [J]. Journal of Dynamic Systems, Measurement, and Control, 1994, 116: 293-304.
DOI: 10.1115/1.2899223
Google Scholar