Controlling Chaos in Permanent Magnet Synchronous Motors by Cascade Adaptive Approach

Article Preview

Abstract:

Chaotic phenomena in permanent magnet synchronous motors (PMSM) can be observed when parameters in PMSM are in a certain range. In general, chaos will degrade the performance of PMSM or even collapse the system. In order to suppress the chaos in PMSM, cascade adaptive control is utilized in this paper. Faithful model of PMSM is not necessarily required by using adaptive control based on dynamic compensation mechanism. By choosing appropriate controller parameters, chaos will be eliminated and the response speed can be tunable. Numerical simulation results for nominal case and parameter perturbation case are given out to confirm the cascade adaptive control is valid in chaos control of PMSM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-100

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kuroe and S. Hayashi, in: Analysis of Bifurcation in Power Electronic Induction Motor Drive Systems [C]. IEEE Power Electronics Specialists Conference, 1989, 923-930.

DOI: 10.1109/pesc.1989.48578

Google Scholar

[2] N. Hemail, in: Stranger Attractors in Brushless DC Motor [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1994, 41(1): 40-45.

DOI: 10.1109/81.260218

Google Scholar

[3] J. H. Chen, K. T. Chau, and C. C. Chan, in: Analysis of Chaos in Current-Mode-Controlled DC Drive Systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(2): 67-76.

DOI: 10.1109/41.824127

Google Scholar

[4] Z. Li, J. B. Park et al, in: Bifurcation and Chaos in a Permanent-Magnet Synchronous Motor [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(3) : 383-387.

DOI: 10.1109/81.989176

Google Scholar

[5] K. T. Chua and J. H. Chen, in: Modeling, Analysis and Experimentation of Chaos in Switched Reluctance Drive System [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, 50(3) : 712-716.

DOI: 10.1109/tcsi.2003.811030

Google Scholar

[6] Z. Jing, C. Yu and G. Chen, in: Complex Dynamics in a Permanent Magnet Synchronous Motor Model [J]. Chaos Solitons and Fractals, 2004, 22: 831-848.

DOI: 10.1016/j.chaos.2004.02.054

Google Scholar

[7] Cao Y. J., in: A Nonlinear Adaptive Approach to Controlling Chaotic Oscillators [J]. Physics Letters A, 2000, 270: 171-176.

DOI: 10.1016/s0375-9601(00)00299-1

Google Scholar

[8] J. H. Lü, J. A. Lu, in: Controlling Uncertain Lü System Using Linear Feedback [J]. Chaos Solitons and Fractals, 2003, 17: 127-133.

DOI: 10.1016/s0960-0779(02)00456-3

Google Scholar

[9] M. Y. Chen, D. H. Zhou, and Y. Shang, in: Nonlinear Feedback Control of Lorenz System [J]. Chaos Solitons and Fractals, 2004, 21, 295-304.

DOI: 10.1016/j.chaos.2003.12.066

Google Scholar

[10] Y. Gao, K. T. Chau, in: Chaotification of PM Sychronous Motor Drives Using Time-Delay Feedback [C]. IEEE Annual Conference of the Industrial Electronics Society, 2002, 2(1): 762-766.

DOI: 10.1109/iecon.2002.1187603

Google Scholar

[11] Nazzal J. M., Natsheh A. N., in: Chaos Control Using Sliding-Mode Theory [J]. Chaos Solitons and Fractals, 2007, 33: 695-702.

DOI: 10.1016/j.chaos.2006.01.071

Google Scholar

[12] Yassen M. T., in: Controlling, Synchronization, and Tracking Chaotic Liu System Using Active Backstepping Design [J]. Physics Letters A, 2007, 360: 582-587.

DOI: 10.1016/j.physleta.2006.08.067

Google Scholar

[13] A. L. Fradkov, R.J. Evans, in: Control of Chaos: Methods and Applications in Engineering [J]. Annual Reviews in Control, 2005, 29: 33-56.

DOI: 10.1016/j.arcontrol.2005.01.001

Google Scholar

[14] A. Mohammad, K. Arash, and G. Behzad, in: Control of Chaos in Permanent Magnet Synchronous Motor by Using Optimal Lyapunov Exponents Placement [J]. Physics Letters A, 2010, 374, 4226-4230.

DOI: 10.1016/j.physleta.2010.08.047

Google Scholar

[15] D. Q. Wei, X. S. Luo, B. H. Wang et al, in: Robust Adaptive Dynamic Surface Control of Chaos in Permanent Magnet Synchronous Motor [J]. Physics Letters A, 2007, 363, 71-77.

DOI: 10.1016/j.physleta.2006.10.074

Google Scholar

[16] A. Tornambe, P. Valigi, in: A Decentralized Controller for the Robust Stabilization of A Class of MIMO Dynamical Systems [J]. Journal of Dynamic Systems, Measurement, and Control, 1994, 116: 293-304.

DOI: 10.1115/1.2899223

Google Scholar