Preparation and Research of AuNi Cathode Catalyst for Direct Methanol Fuel Cell

Article Preview

Abstract:

AuNi alloy was synthesized by vacuum arc melting in high-purity argon atmosphere. The AuNi alloy was characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results of EDS indicated that Au and Ni atoms were well-distributed in the alloy. Moreover, the results of XPS exhibited an electronic transfer from Ni to Au in AuNi phase. The Electrocatalytic oxygen reduction reaction (ORR) activity and the methanol tolerance of the AuNi alloy were respectively investigated using the RDE method and the electrochemical cyclic voltammetry. The results suggested that O2 was directly oxidized to H2O on the AuNi catalyst via an approximate four-electron reduction pathway, and that the AuNi catalyst had a high electrocatalytic activity for the ORR and an acceptable methanol tolerance, simultaneously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1039-1043

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Yano, J.M. Song, H. Uchida and M. Watanabe: J. Phys. Chem. C Vol. 112 (2008), p, 8372.

Google Scholar

[2] H. Yano, M. Kataoka, H. Yamashita, H. Uchida and M. Watanabe: Langmuir Vol. 23 (2007), p.6438.

Google Scholar

[3] H. Yang, W. Vogel, C. Lamy and N. Alonso-Vante: J. Phys. Chem. B Vol. 108 (2004), p.11024.

Google Scholar

[4] S. Wasmus and A. Kuver, J. Electroanal. Chem. Vol. 461 (1999), p.14.

Google Scholar

[5] A.S. Arico, S. Srinivasan and V. Antonucci, Fuel Cells Vol. 2 (2001), p.133.

Google Scholar

[6] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang and D.P. Wilkinson: J. Power Sources Vol. 155 (2006), p.95.

Google Scholar

[7] R.W. Reeve, P.A. Christensen, A. Hamnett, S.A. Haydock and S.C. Roy: J. Electrochem. Soc. Vol. 145 (1998), p.3463.

Google Scholar

[8] N.A. Vante and H. Tributsch: Nature Vol. 323 (1986), p.431.

Google Scholar

[9] J. Prakash, D.A. Tryk, W. Aldred and E.B. Yeager: J. Appl. Electrochem. Vol. 29 (1999), p.1463.

Google Scholar

[10] R. Cote, G. Lalande, G. Faubert, D. Guay, J.P. Dodelet and G. Denes: J. New Mat. Electrochem. Syst. Vol. 1 (1998), p.7.

Google Scholar

[11] S.L. Gojkovic, S. Gupta and R.F. Savinell: J. Electroanal. Chem. Vol. 462 (1999), p.63.

Google Scholar

[12] J. Fournier, G. Lalande, R. Cote, D. Guay and J.P. Dodele: J. Electrochem. Soc. Vol. 144 (1997), p.218.

Google Scholar

[13] J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, 2nd ed., edited by J. Chastain, Perkin-Elmer Corporation (Physical Electronics Division), (1992).

Google Scholar

[14] R.H. Brill and W.R. Shields, Methods of Chemical and Metallurgical Investigation of Ancient Coinage, edited by E.T. Hall and D.M. Metcalf, Royal Numismatics Society, Special Publication No. 8, (1972).

Google Scholar

[15] A.J. Bard and L.R. Faulkner, in: Electrochemical Methods: Fundamentals and Applications, 2nd ed., edited by D. Harris, E. Swain and E. Aiello, chapter, 7, John Wiley & Sons, Inc. (2001).

Google Scholar

[16] A. Sarapuu, M. Nurmika, H. Mändar, A. Rosental, T. Laaksonen, K. Kontturi, D.J. Schiffrin and K. Tammeveski: J. Electroanal. Chem. Vol. 612 (2008), p.78.

DOI: 10.1016/j.jelechem.2007.09.016

Google Scholar

[17] Michael Bron: J. Electroanal. Chem. Vol. 624 (2008), p.64.

Google Scholar

[18] Ave Sarapuu, Silvar Kallip, Aarne Kasikov, Leonard Matisen, Kaido Tammeveski, J. Electroanal. Chem. Vol. 624 (2008), p.144.

DOI: 10.1016/j.jelechem.2008.09.001

Google Scholar