[1]
D. Donoho, Compressed Sensing, IEEE Tans. Inf. Theory, vol. 52, no. 4, pp.1289-1306, Apr. (2006).
Google Scholar
[2]
R.G. Baraniuk, E. Candes, M. Elad, Y. Ma. Applicatiion of Sparse Representation and Compressive Sensing, Proceedings of the IEEE, vol. 98, no. 6, pp.906-909, June, (2010).
DOI: 10.1109/jproc.2010.2047424
Google Scholar
[3]
E.J. Candes, T. Tao. Decoding by Linear Programming, IEEE Trans. Inf. Theory, vol. 51, no. 12, pp.4203-4215, Dec. (2005).
DOI: 10.1109/tit.2005.858979
Google Scholar
[4]
E.J. Candes, The Restricted Isometry Property and its Implications for Compressed Sensing, C.R. Acad. Sci. Pairs, vol. 346, no. 9-10, pp.589-592, (2008).
DOI: 10.1016/j.crma.2008.03.014
Google Scholar
[5]
J.A. Tropp, Greed Is Good: Algorithmic Results for Sparse Approximation, IEEE Trans. Inf. Theory, vol. 50, no. 10, pp.2231-2242, Oct. (2004).
DOI: 10.1109/tit.2004.834793
Google Scholar
[6]
K. Schnass and P. Vandergheynst, Dictionary Precondition for Greedy Algorithms, IEEE Trans. Signal Process, vol. 56, no. 5, pp.1994-2002, May (2008).
DOI: 10.1109/tsp.2007.911494
Google Scholar
[7]
L.R. Welch, Lower Bound on the Maximum Cross Correlation of Signals, IEEE Trans. Inf. Theory, vol. IT-20, no. 3, pp.397-399, May, (1974).
DOI: 10.1109/tit.1974.1055219
Google Scholar
[8]
T. Strohmer and R.W. Heath, Grassmanian Frames with Applications to Coding and Communication, Appl. Comput. Harmon. Anal., vol. 14, no. 3, pp.257-275, May (2003).
Google Scholar
[9]
J.A. Tropp, I.S. Dhillon, R.W. Heath and T. Strohmer, Designing Structured Tight Frames via an Alternating Projection Method, IEEE Tans. Inf. Theory, vol. 51, no. 1, pp.188-209, Jan. (2005).
DOI: 10.1109/tit.2004.839492
Google Scholar
[10]
B. Li, J. Li, Y. Shen. Dictionaries Construction using Alternating Projection Method in Compressive Sensing. Submitted to IEEE Signal Proceeding Letters. Fig. 2. (a) Comparison of mutual cross coherence of dictionaries constructed via DC algorithm and DP algorithm. The number of rows is 128 and the number of columns ranges from 132 to 256; (b) Frobenius distance of type Gram matrix and the set of ideal Gram matrix at each iteration. The size of dictionaries is 128×256. Fig. 3. Comparison of OMP performance using Gaussian dictionaries, dictionaries constructed via Schnass' method, DC algorithm and DP algorithm. The size of dictionaries is 128×256. (a) The non-zeros components of signal are of unite magnitude; (b) The non-zeros components of signal follow standard Gaussian distribution. Fig. 4. Comparison of running time of DC algorithm and DP algorithm. The number of rows of dictionaries is 128 and the number of columns ranges from 132 to 256. (a) DP algorithm; (b) DC algorithm.
Google Scholar