A Parallel Method for Segmenting Intravascular Ultrasound Image Sequence

Article Preview

Abstract:

Intravascular Ultrasound (IVUS) is one of interventional imaging modalities widely used in clinical diagnosis of vascular diseases, especially coronary artery diseases. Segmentation of IVUS images to extract vessel wall boundaries is of importance for quantitative analysis and 3D vessel reconstruction. A 3D parallel method for segmenting IVUS image sequence is proposed in this paper. Firstly, original images are preprocessed to reduce possible noises and eliminate ring-down artifacts. Then, several longitudinal cuts are obtained and intima-lumen and media-adventitia boundaries are detected. Once these boundaries are mapped onto each cross-sectional slice, initial plan of vessel wall boundaries in each frame is obtained. Finally, these initial contours evolve continuously until stop at target contours. Consequently, segmentation of each IVUS tomographic frame is implemented simultaneously and the efficiency is greatly raised compared with 2D sequential approaches.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2051-2055

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Zhuhua and H. Dayi: China Medical Device Information Vol. 5 (1999), p.21.

Google Scholar

[2] M.E. Olszewski, A. Wahle, S.C. Vigmostad, M. Sonka, in: Proceedings of SPIE Conference on Medical Imaging and Image Processing, Vol. 5747 (2005), p.496.

Google Scholar

[3] J.D. Klingensmith, A. Nair, B.D. Kuban, D.G. Vince, in: Proceedings of 2004 IEEE Ultrasonics Symposium, Vol. 3 (2004), p.1765.

Google Scholar

[4] M. Sonka, X.M. Zhang, M. Siebes, S.C. DeJong, M. Collins, C.R. McKay: IEEE Transactions on Medical Imaging Vol. 114 (1995), p.119.

Google Scholar

[5] A. Takagi, K. Hibi, X. Zhang, T.J. Teo, H.N. Bonneau, P.G. Yock, P.J. Fitzgerald: Ultrasound Med. Biol. Vol. 26 (2000), p.1033.

Google Scholar

[6] H. Zhu, Y. Liang and M.H. Friedman, in: Proceedings of SPIE, Durham, NC, USA. Vol. 4684 (2002), p.1727.

Google Scholar

[7] E. Brusseau, C. de Korte, F. Mastik, J. Schaar, A.F. van der Steen: IEEE Transactions on Medical Imaging Vol. 23 (2004), p.554.

Google Scholar

[8] E. dos S. Filho, M. Yoshizawa, A. Tanaka, Y. Saijo, T. Iwamoto, in: Proceedings of 27th IEEE-EMBS Annual International Conference on Engineering in Medicine and Biology, p.3471, (2005).

DOI: 10.1109/iembs.2005.1617226

Google Scholar

[9] M. Papadogiorgaki, V. Mezaris, Y.S. Chatzizisis, I. Kompatsiaris, G.D. Giannoglou, M.G. Strintzis, in: Proceedings of 13th International Conference on Systems, Signals & Image Processing (IWSSIP 2006), Budapest, Hungary, p.461, (2006).

Google Scholar

[10] G.D. Giannoglou, Y.S. Chatzizisis, V. Koutkias, I. Kompatsiaris, M. Papadogiorgaki, V. Mezaris: Computers in Biology and Medicine Vol. 37 (2007), p.1292.

DOI: 10.1016/j.compbiomed.2006.12.003

Google Scholar

[11] G. Mendizabal-Ruiz, M. Rivera and I.A. Kakadiaris, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 23-28 June, p.1, (2008).

Google Scholar

[12] G. Unal, S. Bucher, S. Carlier, G. Slabaugh, T. Fang, K. Tanaka: IEEE Transactions on Information Technology in Biomedicine Vol. 12 (2008), p.335.

DOI: 10.1109/titb.2008.920620

Google Scholar

[13] M.H.R. Cardinal, J. Meunier, G. Soulez, R.L. Maurice, E. Therasse, G. Cloutier: IEEE Transactions on Medical Imaging Vol. 25 (2006), p.590.

DOI: 10.1109/tmi.2006.872142

Google Scholar

[14] J.A. Sethian: Proc. Nat. Acad. Sci. Vol. 93 (1996), p.1591.

Google Scholar