The Analysis of the Associated Legendre Functions with Non-Integral Degree

Article Preview

Abstract:

Spherical cap harmonic (SCH) theory has been widely used to format regional model of fields that can be expressed as the gradient of a scalar potential. The functions of this method consist of trigonometric functions and associated Legendre functions with integral-order but non-integral degree. Evidently, the constructing and computing of Legendre functions are the core content of the spherical cap functions. In this paper,the approximated calculation method of the normalized association Legendre functions with non-integral degree is introduced and an analysis of the entire order of associated non-Legendre function calculation is presented. Besides, we use the Muller method to search out for all intrinsic values. The results showed that the highest order of spherical harmonic function for constructing regional model of fields is limited, thus high-resolution spherical harmonic structure of local gravity field need to be improved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3001-3005

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Haines G V. Spherical cap harmonic analysis [J]. Journal of Geophysical Research, 1985, 90(3): 2583-2591.

Google Scholar

[2] Haines G V. Magsat vertical field anomalies above 40N from spherical cap harmonic analysis [J]. Journal of Geophysical Research, 1985, 90(3): 2593-2598.

DOI: 10.1029/jb090ib03p02593

Google Scholar

[3] Santis A De, Torta M J, Falcone C. Spherical cap models of laplacian potentials and general fields[C]. Geodetic Theory Today.New York, [S. 1. ]:Springer, 1995: 141-150.

DOI: 10.1007/978-3-642-79824-5_25

Google Scholar

[4] Heikki Nevanlinna, Joumi Rynö, Haines V Gerry, Kjell Borg,. Spherical cap harmonic analysis applied to the scandinavian geomagnetic field 1985. 0[J]. Deutsche Hydrographische Zeitschrift, 1988, 41: 177-186.

DOI: 10.1007/bf02225927

Google Scholar

[5] AN Zhenchang, Rotanova N M, Odintsov S D, WANG Peng-cheng. Spherical cap harmonic models of magsat magnetic anomalies over europe and its adjacent region[J]. Chinese Journal of Geophysics, 1998, 41(4): 468-474.

Google Scholar

[6] Fiori R A D, Boteler D H, Koustov A V, Haines G V, Ruohoniemi J M. Spherical cap harmonic analysis of super dual auroral radar network (superdarn) observations for generating MAPS of ionospheric convection[J]. Journal of Geophysical Research, 2010: 115, A0730.

DOI: 10.1029/2009ja015055

Google Scholar

[7] Li Jian-cheng, Chao Ding-bo, Ning Jin-sheng. Spherical cap harmonic expansion for local gravity field representation[J]. Manuscr GEOD, 1995, 20(4): 265-277.

Google Scholar

[8] Hwang Cheinway, Chen kuen Shin. Fully normalized spherical cap harmonic: application to the analysis of se-level data from TOPEX/POSEIDON and ERS-1 [J]. Geophysical Journal International, 1997, 129(2): 450-460.

DOI: 10.1111/j.1365-246x.1997.tb01595.x

Google Scholar

[9] The´bault E, Mandea J J M Schott, Hoffbeck J P. A new proposal for spherical cap harmonic modeling [J]. Geophysical Journal International, 2004, 159: 83-103.

DOI: 10.1111/j.1365-246x.2004.02361.x

Google Scholar

[10] Peng Fuqing, Yu Jinhai. The Characters and Computation of Legendre Function with Non- integral Degree in SCHA. Acta Geodaetica et Carto Graphicasinica. 2000. 29(3): 204-208.

Google Scholar

[11] Powers D L. Boundary value problems[M]. New York: Elsevier, (1999).

Google Scholar

[12] Wu Zhao-cai, Liu Tian-you, Gao Jin-yao. Derivative calculation and application in spherical cap harmonic analysis of local gravity field. Oceanologia etal mnologia sinica. 2006, 37(6):488-492.

Google Scholar

[13] Lebedev N N. Special functions and their application[M]. New York: Dover, (1972).

Google Scholar

[14] Mathews J H, Fink K K. Numerical methods using matlab [M]. New Jersey: Prentice-Hall Inc, (2004).

Google Scholar

[15] Thebault E, Schott J J, Mandea M. Revised spherical cap harmonic analysis (r_scha): validation and properties[J]. Journal of Geophysical Research, 2006, 111: B01102.

DOI: 10.1029/2005jb003836

Google Scholar