[1]
Haines G V. Spherical cap harmonic analysis [J]. Journal of Geophysical Research, 1985, 90(3): 2583-2591.
Google Scholar
[2]
Haines G V. Magsat vertical field anomalies above 40N from spherical cap harmonic analysis [J]. Journal of Geophysical Research, 1985, 90(3): 2593-2598.
DOI: 10.1029/jb090ib03p02593
Google Scholar
[3]
Santis A De, Torta M J, Falcone C. Spherical cap models of laplacian potentials and general fields[C]. Geodetic Theory Today.New York, [S. 1. ]:Springer, 1995: 141-150.
DOI: 10.1007/978-3-642-79824-5_25
Google Scholar
[4]
Heikki Nevanlinna, Joumi Rynö, Haines V Gerry, Kjell Borg,. Spherical cap harmonic analysis applied to the scandinavian geomagnetic field 1985. 0[J]. Deutsche Hydrographische Zeitschrift, 1988, 41: 177-186.
DOI: 10.1007/bf02225927
Google Scholar
[5]
AN Zhenchang, Rotanova N M, Odintsov S D, WANG Peng-cheng. Spherical cap harmonic models of magsat magnetic anomalies over europe and its adjacent region[J]. Chinese Journal of Geophysics, 1998, 41(4): 468-474.
Google Scholar
[6]
Fiori R A D, Boteler D H, Koustov A V, Haines G V, Ruohoniemi J M. Spherical cap harmonic analysis of super dual auroral radar network (superdarn) observations for generating MAPS of ionospheric convection[J]. Journal of Geophysical Research, 2010: 115, A0730.
DOI: 10.1029/2009ja015055
Google Scholar
[7]
Li Jian-cheng, Chao Ding-bo, Ning Jin-sheng. Spherical cap harmonic expansion for local gravity field representation[J]. Manuscr GEOD, 1995, 20(4): 265-277.
Google Scholar
[8]
Hwang Cheinway, Chen kuen Shin. Fully normalized spherical cap harmonic: application to the analysis of se-level data from TOPEX/POSEIDON and ERS-1 [J]. Geophysical Journal International, 1997, 129(2): 450-460.
DOI: 10.1111/j.1365-246x.1997.tb01595.x
Google Scholar
[9]
The´bault E, Mandea J J M Schott, Hoffbeck J P. A new proposal for spherical cap harmonic modeling [J]. Geophysical Journal International, 2004, 159: 83-103.
DOI: 10.1111/j.1365-246x.2004.02361.x
Google Scholar
[10]
Peng Fuqing, Yu Jinhai. The Characters and Computation of Legendre Function with Non- integral Degree in SCHA. Acta Geodaetica et Carto Graphicasinica. 2000. 29(3): 204-208.
Google Scholar
[11]
Powers D L. Boundary value problems[M]. New York: Elsevier, (1999).
Google Scholar
[12]
Wu Zhao-cai, Liu Tian-you, Gao Jin-yao. Derivative calculation and application in spherical cap harmonic analysis of local gravity field. Oceanologia etal mnologia sinica. 2006, 37(6):488-492.
Google Scholar
[13]
Lebedev N N. Special functions and their application[M]. New York: Dover, (1972).
Google Scholar
[14]
Mathews J H, Fink K K. Numerical methods using matlab [M]. New Jersey: Prentice-Hall Inc, (2004).
Google Scholar
[15]
Thebault E, Schott J J, Mandea M. Revised spherical cap harmonic analysis (r_scha): validation and properties[J]. Journal of Geophysical Research, 2006, 111: B01102.
DOI: 10.1029/2005jb003836
Google Scholar