A Note on Stability and Instance Optimality in Compressed Sensing

Article Preview

Abstract:

In this note, it is proved that every -sparse signal vector can be recovered stably from the measurement vector via minimization as soon as the restricted isometry constant of the measurement matrix is smaller than . Note that our results contain the case of noisy data, therefore previous known results in the literature are extent and improved. Also we obtain the results on the stability and instance optimality for some random measurement matrices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4194-4197

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Baraniuk, M. Davenport, R. DeVore, M. Wakin: Constr. Approx. Vol. 28 (2008), p.253.

DOI: 10.1007/s00365-007-9003-x

Google Scholar

[2] E. Candès, J. Romberg, T. Tao: IEEE Trans. Inf. Theory Vol. 52 (2006), p.489.

Google Scholar

[3] E. Candès, J. Romberg, T. Tao: Commun. Pure Appl. Math. Vol. 59(2005), p.1207.

Google Scholar

[4] E. Candès, T. Tao: IEEE Trans. Inf. Theory Vol. 51 (2005), p.4203.

Google Scholar

[5] E. Candès: Compte Rendus de l'Academie des Sciences, Paris, Series I, Vol. 346 (2008), p.589.

Google Scholar

[6] A. Cohen, W. Dahmen, R. DeVore: J. Amer. Math. Soc. Vol. 22 (2009), p.211.

Google Scholar

[7] R. DeVore, G. Petrova, P. Wojtaszczyk: Appl. Comput. Harmon. Anal. Vol. 27(2009), p.275.

Google Scholar

[8] D. Donoho: IEEE Trans. Inf. Theory Vol. 52(2006), p.1289.

Google Scholar

[9] S. Foucart, M. Lai: Appl. Comput. Harmon. Anal. 26(2009), p.395.

Google Scholar

[10] S. Foucart: Appl. Comput. Harmon. Anal. Vol. 29 (2010), p.97.

Google Scholar

[11] P. Wojtaszczyk: Found Comput Math Vol. 10 (2010), p.1.

Google Scholar

[12] S. Zhang, P. Ye, Stability and instance optimality in compressed sensing with regard to some measurement matrices, preprint.

Google Scholar