[1]
Wang, W. P., and Wang, K. K., Geometric Modeling for Swept Volume of Moving Solids, IEEE Comput. Graphics Appl., 6(12), p.8–17. (1986).
DOI: 10.1109/mcg.1986.276586
Google Scholar
[2]
Martin, R., and Stephenson, P., Sweeping of Three-Dimensional Objects, Comput. -Aided Des., 22(4), p.223–234. (1990).
DOI: 10.1016/0010-4485(90)90051-d
Google Scholar
[3]
Weld, J., and Leu, M., Geometric Representation of Swept Volume with Application to Polyhedral Objects, Int. J. Robot. Res., 9(5), p.105–116. (1990).
Google Scholar
[4]
Abdel-Malek, K., and Yeh, H. J., Geometric Representation of the Swept Volume Using the Jacobian Rank Deficiency Conditions, Comput. -Aided Des., 29(6), p.457–468, (1997).
DOI: 10.1016/s0010-4485(96)00097-8
Google Scholar
[5]
Blackmore, D., Leu, M. C., and Wang, L. P., The Sweep-Envelope Differential Equation Algorithm and its Application to NC Machining Verification, Comput. -Aided Des., 29(9), p.629–637. (1997).
DOI: 10.1016/s0010-4485(96)00101-7
Google Scholar
[6]
J. Rossignaca, J.J. Kimb, _, S.C. Songc, K.C. Suhb, C.B. Joungb, Boundary of the volume swept by a free-form solid in screw motion, Computer-aided Design, 39 pp.745-755, (2007).
DOI: 10.1016/j.cad.2007.02.016
Google Scholar
[7]
Chung, Y. C., Park, J. W., Shin, H., and Choi, B. K., 1998, Modeling the Surface Swept by a Generalized Cutter for NC Verification, Comput. -Aided Des., 30(8), p.587–594, (1998).
DOI: 10.1016/s0010-4485(97)00033-x
Google Scholar
[8]
Chiou, C. J., and Lee, Y. S., A Shape-Generating Approach for Multi-Axis Machining G-Buffer Models, Comput. -Aided Des., 31, p.761–776. (1999).
DOI: 10.1016/s0010-4485(99)00069-x
Google Scholar
[9]
Chiou, C. J., and Lee, Y. S., Swept Surface Determination for Five-Axis Numerical Control Machining, Int. J. Mach. Tools Manuf., 42, p.1497–1507, (2002).
DOI: 10.1016/s0890-6955(02)00110-4
Google Scholar
[10]
Chiou, C. J., Accurate Tool Position for Five-Axis Rule Surface Machining by Swept Envelope Approach, Comput. -Aided Des., 36(10), p.967–974, (2004).
DOI: 10.1016/j.cad.2003.10.001
Google Scholar
[11]
Weinert, K., Du, S., Damm, P., and Stautner, M., Swept Volume Generation for the Simulation of Machining Processes, Int. J. Mach. Tools Manuf., 44, p.617–628, (2004).
DOI: 10.1016/j.ijmachtools.2003.12.003
Google Scholar
[12]
Du, S., Surmann, T., Webber, O., and Weinert, K., Formulating Swept Profiles for Five-Axis Tool Motions, Int. J. Mach. Tools Manuf., 45, p.849–861, (2005).
DOI: 10.1016/j.ijmachtools.2004.11.006
Google Scholar
[13]
Yang, J., Abdel Malek, K., Verification of NC Machining Processes Using Swept Volumes, Int. J. Adv. Manuf. Technol., 28, p.82–91, (2006).
DOI: 10.1007/s00170-004-2352-8
Google Scholar
[14]
Zezhong C. Chen, Wei Cai, An Efficient, Accurate Approach to Representing Cutter-Swept Envelopes and Its Applications to Three-Axis Virtual Milling of Sculptured Surfaces, J. Manuf. Sci. Eng. 130, (2008).
DOI: 10.1115/1.2823218
Google Scholar
[15]
E. Aras , Generating cutter swept envelopes in five-axis milling by two-parameter families of spheres, Computer-Aided Design 41, p.95—105, (2009).
DOI: 10.1016/j.cad.2009.01.004
Google Scholar