[1]
Gentle JE (1998) Gaussian elimination. In Numerical linear algebra for applications in statistics. Springer, Berlin Heidelberg New York, p.87–91.
Google Scholar
[2]
Greengard, L. and V. Rokhlin, A fast algorithm for particle simulations. Journal of Computational Physics, 1987. 73: pp.325-348.
DOI: 10.1016/0021-9991(87)90140-9
Google Scholar
[3]
Rokhlin, V., Rapid solution of integral equations of classical potential theory. Journal of Computational Physics, 1985. 60: pp.187-207.
DOI: 10.1016/0021-9991(85)90002-6
Google Scholar
[4]
Greengard, L.F., The Rapid Evaluation of Potential Fields in Particle Systems. 1988, Cambridge: The MIT Press.
Google Scholar
[5]
Lu, C. and W. Chew, Fast algorithm for solving hybrid integral equations. IEE Proceedings-H, 1993. 140(6): pp.455-460.
DOI: 10.1049/ip-h-2.1993.0075
Google Scholar
[6]
Koc, S. and W.C. Chew, Calculation of acoustical scattering from a cluster of scatterers. J. Acoust. Soc. Am., 1998. 103(2): pp.721-734.
DOI: 10.1121/1.421231
Google Scholar
[7]
White, C.A. and M. Head-Gordon, Rotating around the quartic angular momentum barrier in fast multipole method calculations. J. Chem. Phys 1996 105(12): pp.5061-5067.
DOI: 10.1063/1.472369
Google Scholar
[8]
Nishimura, N., K. -i. Yoshida, and S. Kobayashi, A fast multipole boundary integral equation method for crack problems in 3D. Engineering Analysis with Boundary Elements, 1999. 23(1): pp.97-105.
DOI: 10.1016/s0955-7997(98)00065-4
Google Scholar
[9]
Yoshida, K. -i., Applications of fast multipole method to boundary integral equation method, in Dept. of Global Environment Eng. 2001, Kyoto University, Japan: Kyoto.
Google Scholar
[10]
Y. J. Liu, Fast Multipole Boundary Element Method - Theory and Applications in Engineering, Cambridge University Press, New York (2009).
Google Scholar
[11]
M. S. Bapat, L. Shen and Y. J. Liu, Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems, Engineering Analysis with Boundary Elements, 33, Nos. 8-9, 1113-1123 (2009).
DOI: 10.1016/j.enganabound.2009.04.005
Google Scholar
[12]
Wang, P.B. and Z.H. Yao, Fast multipole DBEM analysis of fatigue crack growth. Computational Mechanics, 2005. 38(3): pp.223-233.
DOI: 10.1007/s00466-005-0743-9
Google Scholar
[13]
A. D. Pierce: Acoustics: an introduction to its physical principles and applications. McGraw-Hill, New York, (1981).
Google Scholar
[14]
M.A. Epton and B. Dembart. Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput., 16(4): 865–897, (1995).
DOI: 10.1137/0916051
Google Scholar
[15]
H. Cheng, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm in three dimensions, J. Comput. Phys. 155, 468–498 (1999).
DOI: 10.1006/jcph.1999.6355
Google Scholar
[16]
Y.J. Liu, N. Nishimura, The fast multipole boundary element method for potential problems – a tutorial. Engineering Analysis with Boundary Elements 30 (2006) 371–381.
DOI: 10.1016/j.enganabound.2005.11.006
Google Scholar