A Fit Degree Based Two-Step Lookahead Algorithm for Solving the Container Loading Problem

Article Preview

Abstract:

This paper presents a Fit Degree based Two-step Lookahead algorithm (FDTL) for the NP hard container loading problem. Several evaluation criteria, the fit degrees, are defined to construct different initial solutions as well as to explore different portions of the search space. Then a two-step lookahead tree search procedure is incorporated for the sufficient search such that the algorithm could find better layouts compared to a one-step lookahead tree search procedure. FDTL is tested on two sets of typical instances: 800 instances as proposed by Bischoff and Ratcliff (1995), and 15 instances as proposed by Loh and Nee (1992). Experiments show that this new algorithm improves among the known algorithms on the space utilization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-36

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. He, W. Q. Huang, A caving degree based flake arrangement approach for the container loading problem, Computers & Industrial Engineering, vol. 59(2), p.344–351, (2010).

DOI: 10.1016/j.cie.2010.05.007

Google Scholar

[2] T. Fanslau, A. Bortfeldt, A tree search algorithm for solving the container loading problem, INFORMS Journal on Computing, vol. 22(2), p.222–235, (2010).

DOI: 10.1287/ijoc.1090.0338

Google Scholar

[3] K. He, W. Q. Huang, An efficient placement heuristic for three-dimensional rectangular packing, Computers & Operations Research 38(1), p.227–233, (2011).

DOI: 10.1016/j.cor.2010.04.015

Google Scholar

[4] W. Q. Huang, K. He, A caving degree approach for the single container loading problem, European Journal of Operational Research, vol. 196(7), p.93–101, (2009).

DOI: 10.1016/j.ejor.2008.02.024

Google Scholar

[5] E. E. Bischoff, M. S. W. Ratcliff, Issues in the Development of Approaches to Container Loading, OMEGA – The International Journal of Management Science, vol. 23(4), p.377–390, (1995).

DOI: 10.1016/0305-0483(95)00015-g

Google Scholar

[6] T. H. Loh, A. Y. C. Nee, A packing algorithm for hexahedral boxes, Proceedings of the Industrial Automation 92 Conference, p.115–126. Singapore: Industrial Automation Association, (1992).

Google Scholar

[7] H. Gehring, A. Bortfeldt, A genetic algorithm for solving the container loading problem, International Transactions in Operational Research, vol. 4, p.401–418, (1997).

DOI: 10.1111/j.1475-3995.1997.tb00095.x

Google Scholar

[8] A. Bortfeldt, H. Gehring, Applying tabu search to container loading problems, Operations Research Proceedings 1998, p.533–538. Zurich: Springer, (1998).

DOI: 10.1007/978-3-642-58891-4_84

Google Scholar

[9] A. Bortfeldt, H. Gehring, A hybrid genetic algorithm for the container loading problem, European Journal of Operational Research, vol. 131, p.143–161, (2001).

DOI: 10.1016/s0377-2217(00)00055-2

Google Scholar

[10] H. Gehring, A. Bortfeldt, A Parallel Genetic Algorithm for Solving the Container Loading Problem, International Transactions in Operational Research, vol. 9(4), p.497–511, (2002).

DOI: 10.1111/1475-3995.00369

Google Scholar

[11] A. Bortfeldt, H. Gehring and D. Mack, A parallel tabu search algorithm for solving the container loading problem, Parallel Computing, vol. 29(5), p.641–662, (2003).

DOI: 10.1016/s0167-8191(03)00047-4

Google Scholar

[12] D. Mack, A. Bortfeldt and H. Gehring, A parallel hybrid local search algorithm for the container loading problem, International Transactions in Operational Research, vol. 11(5), p.511–533, (2004).

DOI: 10.1111/j.1475-3995.2004.00474.x

Google Scholar

[13] A. Lim, B. Rodrigues and Y. Yang, 3-D Container Packing Heuristics, Applied Intelligence, vol. 22(2), p.125–134, (2005).

DOI: 10.1007/s10489-005-5601-0

Google Scholar

[14] A. Moura, J. F. Oliveira, A GRASP approach to the container-loading problem, IEEE Intelligent Systems, vol. 20(4), p.50–57, (2005).

DOI: 10.1109/mis.2005.57

Google Scholar

[15] E. E. Bischoff, Three-dimensional packing of items with limited load bearing strength, European Journal of Operational Research, vol. 168, p.952–966, (2006).

DOI: 10.1016/j.ejor.2004.04.037

Google Scholar

[16] F. Parreño, R. Alvarez-Valdes, J. M. Tamarit and J. F. Oliveira, A maximal-space algorithm for the container loading problem, INFORMS Journal on Computing, vol. 20(3), p.412–422, (2008).

DOI: 10.1287/ijoc.1070.0254

Google Scholar

[17] F. Parreño, R. Alvarez-Valdes, J. F. Oliveira and J. M. Tamarit, Neighborhood structures for the container loading problem: a VNS implementation, Journal of Heuristics, vol. 16(1) , p.1–22, (2010).

DOI: 10.1007/s10732-008-9081-3

Google Scholar

[18] J. Terno, G. Scheithauer, U. Sommerweiß and J. Riehme, An efficient approach for the multi-pallet loading problem, European Journal of Operational Research, vol. 123, p.372–381, (2000).

DOI: 10.1016/s0377-2217(99)00263-5

Google Scholar

[19] M. Eley, Solving container loading problems by block arrangement, European Journal of Operational Research, vol. 141, p.393–409, (2002).

DOI: 10.1016/s0377-2217(02)00133-9

Google Scholar

[20] Z. J. Wang, K. W. Li and J. K. Levy, A heuristic for the container loading problem: a tertiary-tree-based dynamic space decomposition approach, European Journal of Operational Research, vol. 191(1), p.86–99, (2008).

DOI: 10.1016/j.ejor.2007.08.017

Google Scholar