[1]
F. Rock, G. Hardiman, J. Timans, R. Kastelein, J. Bazan. A family of human receptors structurally related to Drosophila Toll, Proc. Natl Acad. Sci. USA, vol. 95, no. 2, pp.588-593, January (1998).
DOI: 10.1073/pnas.95.2.588
Google Scholar
[2]
R. Medzhitov, P. Preston-Hurlburt, C. Janeway. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, vol. 388, no. 6640, pp.394-397, July (1997).
DOI: 10.1038/41131
Google Scholar
[3]
O. Takeuchi, S. Sato, T. Horiuchi, K. Hoshino, K. Takeda, Z. Dong, et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins, J. Immunol, vol. 169, no. 1, pp.10-14, July (2002).
DOI: 10.4049/jimmunol.169.1.10
Google Scholar
[4]
F. Re, J. Strominger. Monomeric recombinant MD-2 binds toll-like receptor 4 tightly and confers lipopolysaccharide responsiveness, J. Biol. Chem, vol. 277, no. 26, pp.23427-23432, Jun (2002).
DOI: 10.1074/jbc.m202554200
Google Scholar
[5]
S. Rhee, D. Hwang. Murine TOLL-like receptor 4 confers lipopolysaccharide responsive- ness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase, J. Biol. Chem, vol. 275, no. 44, pp.34035-34040, November (2000).
DOI: 10.1074/jbc.m007386200
Google Scholar
[6]
M. Abreu, M. Fukata, M. Arditi. TLR signaling in the gut in health and disease, J. Immunol, vol. 174, no. 8, pp.4453-4460, April (2005).
DOI: 10.4049/jimmunol.174.8.4453
Google Scholar
[7]
G. Canny, S. Colgan. Events at the host-microbial interface of the gastrointestinal tract. I. Adaptation to amicrobialworld: role of epithelial bactericidal/permeability-increasing protein, Am. J. Physiol. Gastrointest. Liver Physiol, vol. 288, no. 4, pp. G593-G597, April (2005).
DOI: 10.1152/ajpgi.00506.2004
Google Scholar
[8]
E. Lorenz. TLR2 and TLR4 expression during bacterial infections, Curr. Pharm. Des, vol. 12, no. 32, pp.4185-4193, December (2007).
DOI: 10.2174/138161206778743547
Google Scholar
[9]
G. Zhang, S. Ghosh. Negative regulation of toll-like receptor-mediated signaling by Tollip, J. Biol. Chem, vol. 277, no. 9, pp.7059-7065, March (2002).
DOI: 10.1074/jbc.m109537200
Google Scholar
[10]
F. Prendergast, K. Mann. Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskålea, Biochemistry, vol. 17, no. 17, pp.3448-3453. August (1978).
DOI: 10.1021/bi00610a004
Google Scholar
[11]
R. Tsien. The green fluorescent protein, Annu. Rev. Biochem, vol. 67, pp.509-544. July (1998).
DOI: 10.1146/annurev.biochem.67.1.509
Google Scholar
[12]
W. Hu, C. Cheng. Expression of Aequorea green fluorescent protein in plant cells, FEBS Lett, vol. 369, no. 2-3, pp.331-334, August (1995).
DOI: 10.1016/0014-5793(95)00776-6
Google Scholar
[13]
S. Wang, T. Hazelrigg. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis, Nature, vol. 369, no. 6479, pp.400-403, June (1994).
DOI: 10.1038/369400a0
Google Scholar