[1]
F.F. Jobsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science, vol. 98, no. 4323, pp.1264-1267, (1977).
DOI: 10.1126/science.929199
Google Scholar
[2]
T. Shiga, K. Tanabe, Y. Nakase, T. Shida, and B. Chance, Development of a portable tissue oximeter using near infra-red spectroscopy, Med. Biol. Eng. Comput., vol. 33, no. 4, pp.622-626, (1995).
DOI: 10.1007/bf02522525
Google Scholar
[3]
T. Hamaoka, K.K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans, J. Biomed. Opt., vol. 12, no. 6, p.062105, (2007).
DOI: 10.1117/1.2805437
Google Scholar
[4]
S. Ke, X.X. Wen, M. Gurfinkel, C. Charnsangavej, S. Wallace, E.M. Sevick-Muraca, and C. Li, Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts, Cancer. Res., vol. 63, pp.7870-7875, (2003).
DOI: 10.1162/1535350042973481
Google Scholar
[5]
S.R. Fanning, S. Short, K. Cole, S. Andresen, H. Moore, G.T. Budd, and D. Weng, Dynamic infrared imaging - a real-time, non-invasive tool for monitoring tumor response to neoadjuvant therapy for breast cancer: an update., Breast. Cancer. Res. Tr., vol. 100, pp. S151-S152, (2006).
Google Scholar
[6]
A. Villringer and B. Chance, Non-invasive optical spectroscopy and imaging of human brain function, Trends. Neurosci., vol. 20, no. 10, pp.435-442, (1997).
DOI: 10.1016/s0166-2236(97)01132-6
Google Scholar
[7]
Y. Hoshi, Functional near-infrared optical imaging: utility and limitations in human brain mapping, Psychophysiology, vol. 40, no. 4, pp.511-520, (2003).
DOI: 10.1111/1469-8986.00053
Google Scholar
[8]
M. Ferrari, L. Mottola, and V. Quaresima, Principles, techniques, and limitations of near infrared spectroscopy, Can. J. Appl. Physiol., vol. 29, no. 4, pp.463-487, (2004).
DOI: 10.1139/h04-031
Google Scholar
[9]
Y. Hoshi, Functional near-infrared spectroscopy: current status and future prospects, J. Biomed. Opt., vol. 12, no. 6, p.062106, (2007).
DOI: 10.1117/1.2804911
Google Scholar
[10]
B.W. Pogue and M.S. Patterson, Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry, J. Biomed. Opt., vol. 11, no. 4, p.041102, (2006).
DOI: 10.1117/1.2335429
Google Scholar
[11]
E. Okada, M. Firbank, and D.T. Delpy, The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy, Phys. Med. Biol., vol. 40, no. 12, pp.2093-108, (1995).
DOI: 10.1088/0031-9155/40/12/007
Google Scholar
[12]
A. Duncan, J.H. Meek, M. Clemence, C.E. Elwell, L. Tyszczuk, M. Cope, and D.T. Delpy, Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy, Phys. Med. Biol., vol. 40, no. 2, pp.295-304, (1995).
DOI: 10.1088/0031-9155/40/2/007
Google Scholar
[13]
M. Ferrari, Q. Wei, L. Carraresi, R.A. De Blasi, and G. Zaccanti, Time-resolved spectroscopy of the human forearm, J. Photochem. Photobiol. B., vol. 16, no. 2, pp.141-53, (1992).
DOI: 10.1016/1011-1344(92)80005-g
Google Scholar
[14]
H. Zhao, Y. Tanikawa, F. Gao, Y. Onodera, A. Sassaroli, K. Tanaka, and Y. Yamada, Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR, Phys. Med. Biol., vol. 47, no. 12, pp.2075-93, (2002).
DOI: 10.1088/0031-9155/47/12/306
Google Scholar
[15]
D.T. Delpy and M. Cope, Quantification in tissue near-infrared spectroscopy, Philo. Trans. Royal Soc. London, Ser.B., vol. 352, no. 1354, pp.649-659, (1997).
DOI: 10.1098/rstb.1997.0046
Google Scholar
[16]
S.J. Matcher, C.E. Elwell, C.E. Cooper, M. Cope, and D.T. Delpy, Performance comparison of several published tissue near-infrared spectroscopy algorithms, Anal. Biochem., vol. 227, no. 1, pp.54-68, (1995).
DOI: 10.1006/abio.1995.1252
Google Scholar
[17]
B.L. Horecher, The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region, J. Biol. Chem., vol. 148, pp.173-183, (1943).
DOI: 10.1016/s0021-9258(18)72329-6
Google Scholar
[18]
A.N. Yaroslavsky, P.C. Schulze, I.V. Yaroslavsky, R. Schober, F. Ulrich, and H.J. Schwarzmaier, Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range, Phys. Med. Biol., vol. 47, no. 12, pp.2059-73, (2002).
DOI: 10.1088/0031-9155/47/12/305
Google Scholar
[19]
Yi Zheng, Zhili Zhang, Qian Liu, Chuanhua Cao, and Hui Gong, Design and evaluation of a portable continuous-wave NIR topography instrument, Proc. SPIE, vol. 6047, 60740X, (2006).
Google Scholar
[20]
F.P. Tiecks, C. Douville, S. Byrd, A.M. Lam, and D.W. Newell, Evaluation of impaired cerebral autoregulation by the Valsalva maneuver, Stroke, vol. 27, pp.1177-82, (1996).
DOI: 10.1161/01.str.27.7.1177
Google Scholar
[21]
M.A. Franceschini, V. Toronov, M.E. Filiaci, E. Gratton, and S. Fantini, On-line optical imaging of the human brain with 160-ms temporal resolution, Optics Express, vol. 6, no. 3, pp.49-57, (2000).
DOI: 10.1364/oe.6.000049
Google Scholar
[22]
S. Wray, M. Cope, D.T. Delpy, J.S. Wyatt, and E.O. Reynolds, Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation, Biochim. Biophys. Acta., vol. 933, no. 1, pp.184-92, (1988).
DOI: 10.1016/0005-2728(88)90069-2
Google Scholar
[23]
J.M. Schmitt, J.D. Meindl, and F.G. Mihm, An integrated circuit-based optical sensor for in vivo measurement of blood oxygenation, IEEE. Trans. Biomed. Eng., vol. 33, no. 2, pp.98-107, (1986).
DOI: 10.1109/tbme.1986.325883
Google Scholar
[24]
S. Takatani and M.D. Graham, Theoretical analysis of diffuse reflectance from a two-layer tissue model, IEEE. Trans. Biomed. Eng., vol. 26, no. 12, pp.656-64, (1979).
DOI: 10.1109/tbme.1979.326455
Google Scholar