[1]
J. E. Burke. Some factors affecting the rate of grain growth in metals. Transactions of the American Institute for Metallurgical Engineers. v. 180, (1949). p.73.
Google Scholar
[2]
J. K. Stanley; A. J. Perotta. Metallography. v. 2, (1969). p.349.
Google Scholar
[3]
A. E. Diniz; F. C. Marcondes; N. L. Coppini. Technology of Machining of Materials. São Paulo, Artiliber Editora. (2006). Cap. 9, pp.147-161. (in Portuguese).
Google Scholar
[4]
B. Y. Lee; Y. S. Tarng. Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations. Journal of Materials Processing Technology, v. 105, n. 1 (2000). pp.61-66, Sept.
DOI: 10.1016/s0924-0136(00)00582-3
Google Scholar
[5]
Q. Meng; J. A. Arsecularantne; P. Mathew. Calculation of optimum cutting conditions for turning operations using a machining theory. International Journal of Machine Tools & Manufacture: Design, Research and Application, v. 40, n. 12, (2000).
DOI: 10.1016/s0890-6955(00)00026-2
Google Scholar
[6]
M. M. Tolouei-Rad. Intelligent selection of cutting conditions in turning, milling and drilling. International conference on production research 16., 2001, Prague. Annals. Czech Republic: Prague. (Published in CD) ISBN–80-02-01438-3. (2001).
Google Scholar
[7]
D. Shabtay; M. Kaspi. Optimization of the machining economics problem under the failure replacement strategy. International Journal of Production Economics, v. 80, n. 3, (2002). pp.213-230, Dec.
DOI: 10.1016/s0925-5273(02)00255-4
Google Scholar
[8]
E. A. Baptista. Development of a Specialist System to a Machining Process Optimization based on the Web. Doctoral Thesis, Faculty de Mechanical Engineering of UNICAMP, Campinas. (in Portuguese). (2004).
Google Scholar
[9]
G. M. Robinson; M. J. Jackson; M. D. Whitfield. A review of machining theory and tool wear with a view to developing micro and nano machining process. Journal of Materials Science. v. 42. (2007). pp.2002-2015. DOI 10. 1007/s10853-006-0171-z.
DOI: 10.1007/s10853-006-0171-z
Google Scholar
[10]
N. L. Coppini; J. P. B. Destro. Machining Strength - A Contribution to the Characterization of Materials. In: 48º Annual Congress of ABM, 1993, Rio de Janeiro, RJ, 341-342. (in Portuguese).
Google Scholar
[11]
J. P. B. Destro. Machining Strength of Materials – Concept, Measurement, and Applications of a New Property. Doctoral Thesis, Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica. (in Portuguese). (1995).
Google Scholar
[12]
M. Ashby; H. Shercliff; D. Cebon. Materials Engineering, Science, Processing and Design. Butterworth-Heinemann: Oxford. (2007).
Google Scholar
[13]
N. L. Coppini; J. C. Dutra; E. C. dos Santos. New Approach for Applications of Machinability and Machining Strength. Archives of Materials Science and Engineering. v. 39, n. 1, (2009). pp.21-28, Sep.
Google Scholar
[14]
P. Cotteril; P. R. Mould. Recrystallization and Grain Growth in Metals. Halsted Press, John Wiley&Sons., New York, Cap. 9, (1976). pp.250-325: Grain Growth after Primary Recrystallization.
Google Scholar
[15]
J. E. Burke; D. Turnbull. Recrystallization and Grain Growth, Progress in Metal Physics. London: Pergamon Press, Cap. 7, (1952). pp.220-292.
DOI: 10.1016/0502-8205(52)90009-9
Google Scholar
[16]
M. Lewandowska; K. J. Kurzydlowski. Recente development in grain refinement by hydrostatic extrusion. Journal of Materials Science. v. 43. (2008). pp.7299-7306. DOI 10. 1007/s10853-008-2810-z.
DOI: 10.1007/s10853-008-2810-z
Google Scholar
[17]
J. A. Williams; J. G. Horne. Crystallographic effects in metal cutting. Journal of Materials Science. v. 17. (1981). pp.2618-2624.
Google Scholar
[18]
P. A. Beck; M. L. Holzworth; P. R. Sperry. Effect of a Dispersed Phase on Grain Growth in Al-Mn Alloys. Transactions of the American Institute for Metallurgical Engineers. v. 180, (1948). pp.163-92, Out.
Google Scholar
[19]
P. A. Beck. Annealing of Cold Worked Metals. A Quarterly Supplement of the Philosophical Magazine. v. 3, n. 11, (1954). pp.245-324, Jul.
Google Scholar
[20]
S. K. Kurtz; F, M. A. Carpay. Microstructure and Normal Grain Growth in Metals and Ceramics. Part I. Theory. Journal of Applied Physics. v. 51, n. 11, (1980). pp.5735-44, Nov.
DOI: 10.1063/1.327580
Google Scholar
[21]
B. R. Kumar. Influence of crystallographic textures on tensile properties of 316L autenitic stainless steel. Journal of Materials Science. v. 45. (2010). pp.2598-2605. DOI 10. 1007/s10853-010-4233-x.
DOI: 10.1007/s10853-010-4233-x
Google Scholar
[22]
J. C. Dutra. Abnormal Grain Growth in Carburising Steels. Dissertation. Escola Politécnica da Universidade de São Paulo. 220p. (1994).
Google Scholar
[23]
P. A. Beck; J. C. Kremer; L. J. Demer. Grain Growth in High Purity Aluminum. Physical Review. v. 71, (1947). p.555.
DOI: 10.1103/physrev.71.555
Google Scholar
[24]
American Society for Testing and Materials. Standard Methods for Determining Average Grain Size (E112), Annual Book of ASTM Standards. Part 11: Metallography; Nondestructive Testing, American Society for Testing and Materials, Philadelphia, Pa. (1982).
DOI: 10.1002/aheh.19820100213
Google Scholar