[1]
R. Born, D. Scharnweber, S. Rößler, M. Stölzel, M. Thieme, C. Wolf and H. Worch, Surface analysis of titanium based biomaterials, Fresenius J Anal Chem, Vol. 361 (1998), p.697.
DOI: 10.1007/s002160050997
Google Scholar
[2]
K. Vinodgopal, Prashant V. Kamat, Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films, Environ. Sci. Technol., Vol. 29 (1995), p.841.
DOI: 10.1021/es00003a037
Google Scholar
[3]
N. Huang, P. Yang, Y.X. Leng, J.Y. Chen, H. Sun, J. Wang, G.J. Wang, P.D. Ding, T.F. Xi, Y. Leng, Hemocompatibility of titanium oxide films, Biomaterials, Vol. 24 (2003), p.2177.
DOI: 10.1016/s0142-9612(03)00046-2
Google Scholar
[4]
N. Huang, Y.X. Leng, P. Yang, J.Y. Chen, H. Sun, J. Wang, G.J. Wan, A.S. Zhao, P.D. Ding, Surface modification of coronary artery stent by Ti–O/Ti–N complex film coating prepared with plasma immersion ion implantation and deposition, Nucl. Inst. Meth. Phys. Res. B, Vol. 242 (2006).
DOI: 10.1016/j.nimb.2005.08.080
Google Scholar
[5]
Kunio. Okimura, Low temperature growth of rutile TiO2 films in modified rf magnetron sputtering, Surf. Coat. Technol., Vol. 135 (2000), p.286.
DOI: 10.1016/s0257-8972(00)00999-3
Google Scholar
[6]
O. Treichel and V. kirchhoff, The influence of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass, Surf. Coat. Technol., Vol. 123(2000), p.268.
DOI: 10.1016/s0257-8972(99)00522-8
Google Scholar
[7]
A. Bendavid, P. J. Matin and H. Takikawa, Deposition and modification of titanium dioxide thin films by filtered arc deposition, Thin solid films, Vol. 360 (2000), p.241.
DOI: 10.1016/s0040-6090(99)00937-2
Google Scholar
[8]
P. Yang, N. Huang, Y.X. Leng, J.Y. Chen, H. Sun, J. Wang, G.J. Wan , Inhibition of adherent platelet activation produced by Ti–O thin film fabricated by PIII, Surf. Coat. Technol., Vol. 186 (2004), p.265.
DOI: 10.1016/j.surfcoat.2004.03.031
Google Scholar
[9]
P. Yang, Mechanism of Antithrombotic Properties of two kinds of blood-contacting Inorganic Films [D] Southwest Jiaotong University, (2006).
Google Scholar
[10]
P. Yang, N. Huang, Y.X. Leng, J.Y. Chen, R.K.Y. Fu, S.C.H. Kwok, Y. Lengc, P.K. Chu, Activation of platelets adhered on amorphous hydrogenated carbon (a-C: H) films synthesized by plasma immersion ion implantation-deposition (PIII-D), Biomaterials, Vol. 24 (2003).
DOI: 10.1016/s0142-9612(03)00091-7
Google Scholar
[11]
V. Raman, S. Tamilselvi and N. Rajendran, Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid, Electrochimica Acta, Vol. 52 (2007), p.7418.
DOI: 10.1016/j.electacta.2007.06.040
Google Scholar
[12]
F. Wen, N. Huang, H. Sun, P. Yang and J. Wang, Platelet Adhesion Study and Characteristic of Hydrogenated Carbon Films Synthesized by PIII-D, Key Engineering Materials Vols. 288-289 (2005), p.323.
DOI: 10.4028/www.scientific.net/kem.288-289.323
Google Scholar
[13]
W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., Vol. 19 (2004), p.3.
DOI: 10.1557/jmr.2004.19.1.3
Google Scholar