Comparison of Resonance Characteristics for Two Metal Nano-Optical Antennas

Article Preview

Abstract:

In this paper dipole type optical antenna and V type optical antenna are designed using gold and glass substrates, we compared their resonance properties by finite-difference time-domain (FDTD) method, calculated and analyzed their distribution and field enhancement effects contrastively. The results showed that in the same projected length, the resonant frequency of dipole type optical antenna was higher than the V type optical antenna, while the resonance enhancement factor was lower than the V type optical antenna. These have certain reference significance for researching characteristics of nanoantenna based on surface plasma.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

894-899

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Melendez, R. Carr, K. Kukanskis, and J. Elkind, et al, A commercial solution for surface plasmon sensing, Sensors and Actuators, vol. 35, no. 1, pp.212-216, September (1996).

DOI: 10.1016/s0925-4005(97)80057-3

Google Scholar

[2] H. Raether, Surface plasmon, Berlin: Springer, 1988, pp.89-102.

Google Scholar

[3] P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Resonant optical antennas, Science, vol. 308, pp.1607-1609, June (2005).

DOI: 10.1126/science.1111886

Google Scholar

[4] J. J. Greffet, Nanoantennas for light emission, Science, vol. 308, no. 5728, pp.1561-1563, June (2005).

DOI: 10.1126/science.1113355

Google Scholar

[5] D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Gap-dependent optical coupling of single "bowtie" nanoantennas resonance in the visible, Nano Letters, vol. 4, no. 5, March 2004, pp.957-961.

DOI: 10.1021/nl049951r

Google Scholar

[6] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Improving the mismatch between light and nanoscale objects with gold bowtie nano antennas, Physical. Review Letters, vol. 94, no. 1, p.017402, January (2005).

DOI: 10.1103/physrevlett.94.017402

Google Scholar

[7] D. G. Robert, J. S. Robert, and E. P. Daniel, Optical antenna: Towards a unity Efficiency near-field optical probe, Applied Physics Letters, vol. 70, no. 11, pp.1354-1356, March (1997).

DOI: 10.1063/1.118577

Google Scholar

[8] K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C.F. Quate, Optical antennas: Resonators for local field enhancement, Journal of Applied Physics, vol. 94, no. 7, pp.4632-4642, October (2003).

DOI: 10.1063/1.1602956

Google Scholar

[9] N. C. panoiu, and R. M. Osgood, Enhanced optical absorption for Photovoltaics via excitation of waveguide and Plasmon-Polariton modes, Optics Letters, vol. 32, no. 19, pp.2825-2827, October (2007).

DOI: 10.1364/ol.32.002825

Google Scholar

[10] Kunz K S and Luebbers R J, Finite difference time domain method for electromagnetics, Florida: CRC Press, (1993).

Google Scholar

[11] Hafner C, The Generalized Multiple Multipole Technique for Computational Electromagnetics, Boston: Artech House, (1990).

Google Scholar

[12] Zhu Shao-Li, Luo Xian-Gang, and Du Chun-Lei, Discrete dipole approximation aided design method for nanostructure arrays, Chinese Physics Letters, vol. 24, no. 10, pp.2092-2095, (2007).

DOI: 10.1088/0256-307x/24/10/053

Google Scholar

[13] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Butterworth–Heinemann, (2000).

Google Scholar

[14] H. Xie, F. M. Kong, and K. Li, The electric field enhancement and resonance in optical antenna composed of Au nanoparticles, Journal of Electromagnetic Waves and Applications, vol. 23, pp.535-548, (2009).

DOI: 10.1163/156939309787612419

Google Scholar