The Preparation and Evaluation of the Combined Artificial Bone

Article Preview

Abstract:

Every year, roughly two million patients worldwide sustain a bone grafting procedure to repair bone defects stemming from tumor, the wound, the infection, as well as other reasons [1, 2]. The bone transplantation is one of main methods to treat bone damages [3]. The gold standard is to use autologous bone or autograft [4]. However, both the need of the second surgery and morbidity at the extraction site [5-7] has been an incentive to search for alternative treatment. One of them is to form bone graft bone. Many materials have been widely chosen to form bone graft substitutes: metals, polymers, ceramics, dehydrate, and calcium phosphates [8-13]. Although these synthetic materials provide an immediate solution for many patients, their long-term performance is generally not satisfactory. This is often due to a mechanical property mismatch between the implant failure and tissue damage [14, 15]. The development of combined artificial bone with improved mechanical properties and enhanced biocompatibility calls for a biomimetic approach using natural bone as a guide.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hall, M. J., Owing, M.F.. 2000 National Hospital Discharge Survery. National Center for Health Statistics: Hyattsville, MD, 2000,Vol 329.

Google Scholar

[2] Greenwald, A. S., Garino J.P.. Bearing Surfaces: The Good, the Bad and the Ugly. J Bone Joint Surg. Am. 2001, 83-A, Supplement 2, Part2. 98-100.

DOI: 10.2106/00004623-200100022-00002

Google Scholar

[3] Boyde A., Corsi A., Quarto R., Cancedda R., Bianco P.. Osteoconduction in Large Macroporous Hydroxyapatite Ceramic Implants: Evidence for a Complementary Integration and Disintegration Mechanism. Bone, 1999, 24:579-589.

DOI: 10.1016/s8756-3282(99)00083-6

Google Scholar

[4] Mahendra A., Maclean A.D.. Available Biological Treatments for Complex Non-Unions. Injury, 2007, 38: 4-11.

DOI: 10.1016/s0020-1383(08)70004-4

Google Scholar

[5] Arrington, E.D., Smith W.J., Chambers, H.G., et al. Complications of Iliac Crest Bone Harvesting. Clin. Orthop, 1996, 329: 300-309.

DOI: 10.1097/00003086-199608000-00037

Google Scholar

[6] Banwart, J. C., Asher M. A., Hassanein R. S.. Iliac Crest Bone Graft Harvest Donor Site Morbidity. Astatistical Evaluation. Spine., 1995, 20: 1055-1060.

DOI: 10.1097/00007632-199505000-00012

Google Scholar

[7] Yonger, E.M., Chapman, M.W.. Morbidity at Bone Graft Donor Sites. J. Orthop Trauma.,1989, 3: 192-195.

Google Scholar

[8] Bohner M.. Resorbable Biomaterials as Bone Graft Substitutes. Materialstoday, 2010, 13:24-30.

DOI: 10.1016/s1369-7021(10)70014-6

Google Scholar

[9] Heini, P.F., Berlemann, U.. Bone substitutes in Vertebroplasty. Eur Spine J.,2001,10:205-213.

Google Scholar

[10] Vaccaro, A. R., Madigan, L..Spinal applications of biabsorbale implants. Orthopedics, 2002, 25: 1115-1120.

Google Scholar

[11] Thomson, R. C., Yaszemski, M. J., Powers, J. M., et al. Hydroxyapatite fiber reinforced poly (alpha-hydroxy ester) foams for bone regeneration. Biomaterials, 1998, 19: 1935-1943.

DOI: 10.1016/s0142-9612(98)00097-0

Google Scholar

[12] Marra, K. G., Szem, J. W., Kumta, P. N., et al. In Vitro Analaysis of Biodegradable Polymer Blend/Hydroxyapatite Composites for Bone Tissue Engineering. J. Biomed. Mater. Res., 1999, 47: 324-335.

DOI: 10.1002/(sici)1097-4636(19991205)47:3<324::aid-jbm6>3.0.co;2-y

Google Scholar

[13] Ma, P, X., Zhang, R. Y., Xiao, G. Z., et al. Engineering new BONE TISSUE IN vitro on hightly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds. J. Biomed. Mater. Res., 2001,54: 284-293.

DOI: 10.1002/1097-4636(200102)54:2<284::aid-jbm16>3.0.co;2-w

Google Scholar

[14] Hillsley, M. V., Frangos, J. A..The Role of Interstitial Fluid flow. Biotechnol. Bioeng.1994, 43:573-581.

Google Scholar

[15] Weiner, S., Wagner, H. D.. The material bone: structure mechanical function relations. Annu. Rev. Mater. Sci., 1998, 28:271-298.

DOI: 10.1146/annurev.matsci.28.1.271

Google Scholar

[16] Khairoun I, Driessens FC, Boltong MG, et al. Addition of cohesion promotors to calcium phosphate cements. Biomaterials. 1999, 20(4): 393-398.

DOI: 10.1016/s0142-9612(98)00202-6

Google Scholar

[17] Driessens FCM, Boltong MG, Bermudez O, et al. Formulation and setting times of some calcium orthophosphate cements: a plot study.J. Mater. Sci. Mater. Med. 1993, 4:503-508.

DOI: 10.1007/bf00120130

Google Scholar

[18] Munch E., Launey M. E., Alsem D. H., et al. Tough Bio-Inspired Hybrid Materials. Science, 2008, 322: 1516-1520.

DOI: 10.1126/science.1164865

Google Scholar

[19] Feed C.E, Vunjak-novakovic G., Iron K.J.. Biodegradable Polymer Scaffolds for Tissue Engineering. Biotechnology,1994, 12: 689-695.

Google Scholar

[20] Rzeszutek K. F., Sarraf J.E.. Proton Pump Inhibitors Control Osteoclastic Resorption of Calcium Phosphate Implants and Stimulate Increased Local Reparative Bone Growth. J. Craniofac. Surge., 2003 ,14: 301-307.

DOI: 10.1097/00001665-200305000-00007

Google Scholar

[21] De'an Yang, Zi Yanga, Xu Lia et al. A study of hydroxyapatite/calcium sulphate bioceramics. Ceramics International. 2005, 31:1021–1023.

DOI: 10.1016/j.ceramint.2004.10.016

Google Scholar

[22] Prokop A, Hofl A, Hellmich M, et al. Degradation of poly-L/DLlactide versus TCP composite pins: a three-year animal study. J Biomed Mater Res . 2005, 75: 304–310.

DOI: 10.1002/jbm.b.30300

Google Scholar

[23] Zhang, M., Wang, J.S., Wei, X. C., et al. Performance Analysis of Injectable Dydroxyapatite/Calcium Sulfate Bone Substitute of Different Prescriptions. Chinese journal of clinical rehabilitation. 2006, 10: 69-71.

Google Scholar

[24] Lee RW, Volz RG, Sheridan D. The role of fixation and bone quality on the mechanical stability of tibial knee components. Clin Orthop Rel Res. 1991, 273: 177-83.

DOI: 10.1097/00003086-199112000-00027

Google Scholar