A New Expanded Cage Designed for Lumbar Disc Herniation: Finite Element Analysis

Article Preview

Abstract:

Objective. To evaluate biomechanics of the new-designed cage for lumbar interbody fusion by using FEMs analysis.Methods. Five validated finite element models of L4–L5 lumbar segments were established to simulate the intact lumbar segement, lumbar discectomy and lumbar discectomy instrumented posterior lumbar interbody fusion with single three kinds of cage (threaded cage, impacted cage and new expanded cage), and analyzed the biomechanics of these models.Results. The maximum ranges of motion and the maximum stress of facet joint were appeared in discectomy model, and the insertion of cages obviously decreased the range and the maximum stresses in all motions. However, only the ranges in expanded cage model were lower than those in intact model. Conclusions. The new-designed expanded cage resulted in highest stability and lowest stress of facet joint in fusion models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-83

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. T. Wetzel and H. LaRocca, The failed posterior lumbar interbody fusion, Spine (Phila Pa 1976) 16 (1991) 839-845.

DOI: 10.1097/00007632-199107000-00027

Google Scholar

[2] S. D. Kuslich, G. Danielson, J. D. Dowdle, J. Sherman, B. Fredrickson, H. Yuan and S. L. Griffith, Four-year follow-up results of lumbar spine arthrodesis using the bagby and kuslich lumbar fusion cage, Spine (Phila Pa 1976) 25 (2000) 2656-2662.

DOI: 10.1097/00007632-200010150-00018

Google Scholar

[3] E. H. Cassinelli, C. Wallach, B. Hanscom, M. Vogt and J. D. Kang, Prospective clinical outcomes of revision fusion surgery in patients with pseudarthrosis after posterior lumbar interbody fusions using stand-alone metallic cages, Spine J. 6 (2006) 428-434.

DOI: 10.1016/j.spinee.2005.11.003

Google Scholar

[4] G. R. Fogel, J. S. Toohey, A. Neidre and J. W. Brantigan, Outcomes of l1-l2 posterior lumbar interbody fusion with the lumbar i/f cage and the variable screw placement system: Reporting unexpected poor fusion results at l1-l2, Spine J. 6 (2006) 421-427.

DOI: 10.1016/j.spinee.2005.09.011

Google Scholar

[5] T. R. Oxland and T. Lund, Biomechanics of stand-alone cages and cages in combination with posterior fixation: A literature review, Eur. Spine J. 9 Suppl 1 (2000) S95-101.

DOI: 10.1007/pl00010028

Google Scholar

[6] J. W. Brantigan, A. Neidre and J. S. Toohey, The lumbar i/f cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a food and drug administration clinical trial, Spine J. 4 (2004) 681-688.

DOI: 10.1016/j.spinee.2004.05.253

Google Scholar

[7] M. F. Chiang, Z. C. Zhong, C. S. Chen, C. K. Cheng and S. L. Shih, Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis, Spine (Phila Pa 1976) 31 (2006) E682-689.

DOI: 10.1097/01.brs.0000232714.72699.8e

Google Scholar

[8] A. Polikeit, S. J. Ferguson, L. P. Nolte and T. E. Orr, Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: Finite element analysis, Eur. Spine J. 12 (2003) 413-420.

DOI: 10.1007/s00586-002-0505-8

Google Scholar

[9] K. Goto, N. Tajima, E. Chosa, K. Totoribe, S. Kubo, H. Kuroki and T. Arai, Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis), J. Orthop. Sci. 8 (2003) 577-584.

DOI: 10.1007/s00776-003-0675-1

Google Scholar

[10] C. S. Chen, C. K. Cheng and C. L. Liu, A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine, J. Spinal Disord Tech. 15 (2002) 53-63.

DOI: 10.1097/00024720-200202000-00010

Google Scholar

[11] T. H. Smit, A. Odgaard and E. Schneider, Structure and function of vertebral trabecular bone, Spine (Phila Pa 1976) 22 (1997) 2823-2833.

DOI: 10.1097/00007632-199712150-00005

Google Scholar

[12] I. Yamamoto, M. M. Panjabi, T. Crisco and T. Oxland, Three-dimensional movements of the whole lumbar spine and lumbosacral joint, Spine (Phila Pa 1976) 14 (1989) 1256-1260.

DOI: 10.1097/00007632-198911000-00020

Google Scholar

[13] K. S. Suk, H. M. Lee, N. H. Kim and J. W. Ha, Unilateral versus bilateral pedicle screw fixation in lumbar spinal fusion, Spine (Phila Pa 1976) 25 (2000) 1843-1847.

DOI: 10.1097/00007632-200007150-00017

Google Scholar

[14] J. Zhao, Y. Hai, N. R. Ordway, C. K. Park and H. A. Yuan, Posterior lumbar interbody fusion using posterolateral placement of a single cylindrical threaded cage, Spine (Phila Pa 1976) 25 (2000) 425-430.

DOI: 10.1097/00007632-200002150-00006

Google Scholar

[15] J. Zhao, T. Hou, X. Wang and S. Ma, Posterior lumbar interbody fusion using one diagonal fusion cage with transpedicular screw/rod fixation, Eur. Spine J. 12 (2003) 173-177.

DOI: 10.1007/s00586-001-0376-4

Google Scholar

[16] J. M. Cavanaugh, Y. Lu, C. Chen and S. Kallakuri, Pain generation in lumbar and cervical facet joints, J. Bone Joint Surg. Am. 88 Suppl 2 (2006) 63-67.

DOI: 10.2106/jbjs.e.01411

Google Scholar