Microstructure and Properties of Zirconia-Mullite Nanocomposites Obtained from Si-Al-Zr-O Amorphous Bulks Doped with CaO and MgO

Article Preview

Abstract:

Zirconia-mullite nanocomoposites were prepared from Si-Al-Zr-O amorphous bulk with diffrent content of CaO and MgO by two-step thermal treatment between 900 and 1200°C. The effects of the additives on the phase and microsturcture were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The results show that the addition of CaO promotes cristobalite phase formation and the anisotropic growth of mullite grains. An indention micro-crack method was used to measure the fracture toughness of zirconia-mullite nanocomoposites. The results demonstrate that the fracture toughness increases with higher concentration of CaO. The improvement of fracture toughness is attributed to the anisotropic growth of grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-91

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. A Khor and Y. Li. Mater. Lett., 2001, 48, 57– 63.

Google Scholar

[2] C. Duran and Y. K Tür. Mater. Lett., 2005, 59, 245– 249.

Google Scholar

[3] H. Schneider, J. Schreuer and B. Hildmann. J. Euro. Ceram. Soc., 2008, 28, 329– 44.

Google Scholar

[4] R. Torrecillas, G. Fantozzi, S. Aza and J. S. Moya. Acta. Mater., 1997, 45, 897–906.

DOI: 10.1016/s1359-6454(96)00226-1

Google Scholar

[5] K. A Khor, L. G Yu, Y. Li, Z. L Dong and Z. A Munir. Mater. Sci. Eng. A., 2003, 339, 286–296.

Google Scholar

[6] C. Duran and Y. K Tür. J. Mater. Sci., 2006, 41, 3303–3313.

Google Scholar

[7] R. H Hannink, P. M Kelly and B. C Muddle. J. Am. Ceram. Soc., 2000, 83, 461–487.

Google Scholar

[8] K. Das, B. Mukherjee and G. Banerjee. J. Euro. Ceram. Soc., 1998, 18, 1771–1777.

Google Scholar

[9] L. B Garrido and E. F Aglietti. Mater. Sci. Eng. A., 2004, 369, 250–257.

Google Scholar

[10] X. H Jin, L. Gao, Y. M Kan, Y. R Chen and Q. M Yuan. Mater. Lett., 2002, 52, 10–13.

Google Scholar

[11] J. Wang, H. M Kou, X. J. Liu, Y. B Pan and J. K Guo. Ceram. Int., 2007, 33, 719– 722.

Google Scholar

[12] C. Oztürk and Y. KTür. J. Euro. Ceram. Soc., 2007, 27, 1463–1467.

Google Scholar

[13] S. Maitra, N. Rahamaa, A. R Sarka and A. Tarafdar. Ceram. Int., 2006, 32, 201−206.

Google Scholar

[14] J. M Rincon, J. S Mova and M. E Melo. Trans. Br. Ceram. Soc., 1986, 85, 201– 206.

Google Scholar

[15] T. S Zhang, L. B Kong, Z. H Du, J. Ma and S. Li. J. Alloys. and Compd., 2010, 506, 777– 783.

Google Scholar

[16] P. Pena, J. S Moya and E. Cardinal. J. Mater. Sci. Lett., 1983, 2, 772– 774.

Google Scholar

[17] S. Lathabai, D. G Hay, F. Wagner and N. Claussen. J. Am. Ceram. Soc., 1996, 79, 248– 256.

Google Scholar

[18] S. Maitra, S. Pal, S. Nath, A. Pandey and R. Lodha. Ceram. Int., 2002, 28, 819– 826.

Google Scholar

[19] S. Maitra, A. Rahaman, A. Sarkar and A. Tarafdar. Ceram. Int., 2006, 32, 201– 206.

Google Scholar

[20] X. P Tan, S. Q Liang, G. W Zhang, D. K Guan and L. Y Chai. Phase. transit., 2011, 84, 157–166.

Google Scholar

[21] C. B. Ponton and R. D. Rawlings. Mater. Sci. Tech., 1989, 5, 865– 872.

Google Scholar

[22] P. Miranzo, P. Pena, S. De Aza, J. S. Moya, J. Ma Rincon and G. Thomas. J. Mater. Sci., 1987, 22, 2987– 2992.

DOI: 10.1007/bf01086502

Google Scholar

[23] J. B Wang and H. A Yang. Refract., 2005, 39, 411– 414.

Google Scholar