[1]
Gardner J W, Bartlett P N. Electronic noses principles and applications[M]. London: Oxford University Pt~ss, (1999).
Google Scholar
[2]
Hiranaka Y, Abe T, Murata H. Gas-dependent response in the temperature transient of SnO2 gas sensors[J]. Sensors and Actuators B, 1992(9): 177-182.
DOI: 10.1016/0925-4005(92)80213-h
Google Scholar
[3]
Amamoto T, Yamaguchi T, iatsum Y, et a1. Development of pulsedrive semiconductor gas sensor[J]. Sensors and Actuators B, 1993(13-14): 587-588.
Google Scholar
[4]
Sears W M, Colbow K, Consadori F. Algorithms to improve the selectivity of thermally cycled tin oxide gas sensors[J]. Sensors and Actuators, 1989(19): 333-349.
DOI: 10.1016/0250-6874(89)87084-2
Google Scholar
[5]
Nakata S, Kato Y, Kaneda Y, et a1. Rhythmic chemical reaction of CO onthe surface of a SnO2 gas sensor[J]. Applied SurfaceSei-ence, 1996(103): 369-376.
DOI: 10.1016/s0169-4332(96)00551-x
Google Scholar
[6]
Barsan N, Tomeseu A. The temperature dependence of the response of SnO2-based gas sensing layers to O2, CH4 and CO[J]. Sensors and Actuators B, 1995(26-27): 45-48.
DOI: 10.1016/0925-4005(94)01553-t
Google Scholar
[7]
Fort A, Machetti N, Rocchi S, et a1. Tin oxide gas sensing: compa-rison among diferent measurement techniques for gas mixture classification[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(3): 921-926.
DOI: 10.1109/tim.2003.814362
Google Scholar
[8]
Llobet E, loneseu R, A1-Khalifa S, et al. Multicomponent gas mixlure analysis using a single tin oxide sensor and dynamic pattern recognition[J]. IEEE Sensors Jonmal, 2001, 1(3): 207-213.
DOI: 10.1109/jsen.2001.954833
Google Scholar
[9]
Caviochi R E, Suehle J S, Kreider K G, et a1. Optimized temperature pulse sequences for the enhancement of chemically. specific response pnuems from micro-hotplate gas sonfors[C]/Transdueers'95, Eurosensom IX, the 8th International Conference on Solid-state Sensors and Actuators, Stockholm Sweden, (1995).
DOI: 10.1109/sensor.1995.717359
Google Scholar
[10]
HuangX J, MengFL, PiZX, eta1. Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation[J]. Sensors and Actuatem B, 2004 (99): 444-450.
DOI: 10.1016/j.snb.2003.12.013
Google Scholar
[11]
Nakata S, Okunishi H, Inooka S. Gas sensing system based on the cyclic temperature further characterization by the second harmonic perturbation[J]. Analytica Chimica Acta, 2004(517): 153-159.
DOI: 10.1016/j.aca.2004.04.033
Google Scholar
[12]
Ge Haifeng, Liu Junhua. Identification of gas mixtures by a distri-buted support vector machine network and wavelet decomposition from temperature modulated semiconductor gas sensor[J]. Sensors and Actuators B, 2006(117): 408-4l4.
DOI: 10.1016/j.snb.2005.11.037
Google Scholar
[13]
Clifford P K, Tuma D T. Characteristics of semiconductor gas sensors: II. Steady state response[J]. Sensors and Actuators, 1983(3): 233-254.
DOI: 10.1016/0250-6874(82)80026-7
Google Scholar
[14]
Ionescu R, Llbet E, Al-Khalifa S. Response model for thermally modulated tin oxide-based microhotplate gas sensors[J]. Sensors and Actuators B, 2003(95): 203 -211.
DOI: 10.1016/s0925-4005(03)00420-9
Google Scholar