Review on Temperature Modulation Technology of Gas Sensors

Article Preview

Abstract:

Temperature modulation has been proved to be an efficient technique for improving the selectivity and stability of gas sensors. Recent years, there are many reports about it. This paper detailed analysis of the technology and reviewed the methods of temperature modulation, the techniques of dynamic signal processing, the optimization of modulation modes, and dynamic modeling of the responses. Then discusses the research trends of the technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

567-571

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gardner J W, Bartlett P N. Electronic noses principles and applications[M]. London: Oxford University Pt~ss, (1999).

Google Scholar

[2] Hiranaka Y, Abe T, Murata H. Gas-dependent response in the temperature transient of SnO2 gas sensors[J]. Sensors and Actuators B, 1992(9): 177-182.

DOI: 10.1016/0925-4005(92)80213-h

Google Scholar

[3] Amamoto T, Yamaguchi T, iatsum Y, et a1. Development of pulsedrive semiconductor gas sensor[J]. Sensors and Actuators B, 1993(13-14): 587-588.

Google Scholar

[4] Sears W M, Colbow K, Consadori F. Algorithms to improve the selectivity of thermally cycled tin oxide gas sensors[J]. Sensors and Actuators, 1989(19): 333-349.

DOI: 10.1016/0250-6874(89)87084-2

Google Scholar

[5] Nakata S, Kato Y, Kaneda Y, et a1. Rhythmic chemical reaction of CO onthe surface of a SnO2 gas sensor[J]. Applied SurfaceSei-ence, 1996(103): 369-376.

DOI: 10.1016/s0169-4332(96)00551-x

Google Scholar

[6] Barsan N, Tomeseu A. The temperature dependence of the response of SnO2-based gas sensing layers to O2, CH4 and CO[J]. Sensors and Actuators B, 1995(26-27): 45-48.

DOI: 10.1016/0925-4005(94)01553-t

Google Scholar

[7] Fort A, Machetti N, Rocchi S, et a1. Tin oxide gas sensing: compa-rison among diferent measurement techniques for gas mixture classification[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(3): 921-926.

DOI: 10.1109/tim.2003.814362

Google Scholar

[8] Llobet E, loneseu R, A1-Khalifa S, et al. Multicomponent gas mixlure analysis using a single tin oxide sensor and dynamic pattern recognition[J]. IEEE Sensors Jonmal, 2001, 1(3): 207-213.

DOI: 10.1109/jsen.2001.954833

Google Scholar

[9] Caviochi R E, Suehle J S, Kreider K G, et a1. Optimized temperature pulse sequences for the enhancement of chemically. specific response pnuems from micro-hotplate gas sonfors[C]/Transdueers'95, Eurosensom IX, the 8th International Conference on Solid-state Sensors and Actuators, Stockholm Sweden, (1995).

DOI: 10.1109/sensor.1995.717359

Google Scholar

[10] HuangX J, MengFL, PiZX, eta1. Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation[J]. Sensors and Actuatem B, 2004 (99): 444-450.

DOI: 10.1016/j.snb.2003.12.013

Google Scholar

[11] Nakata S, Okunishi H, Inooka S. Gas sensing system based on the cyclic temperature further characterization by the second harmonic perturbation[J]. Analytica Chimica Acta, 2004(517): 153-159.

DOI: 10.1016/j.aca.2004.04.033

Google Scholar

[12] Ge Haifeng, Liu Junhua. Identification of gas mixtures by a distri-buted support vector machine network and wavelet decomposition from temperature modulated semiconductor gas sensor[J]. Sensors and Actuators B, 2006(117): 408-4l4.

DOI: 10.1016/j.snb.2005.11.037

Google Scholar

[13] Clifford P K, Tuma D T. Characteristics of semiconductor gas sensors: II. Steady state response[J]. Sensors and Actuators, 1983(3): 233-254.

DOI: 10.1016/0250-6874(82)80026-7

Google Scholar

[14] Ionescu R, Llbet E, Al-Khalifa S. Response model for thermally modulated tin oxide-based microhotplate gas sensors[J]. Sensors and Actuators B, 2003(95): 203 -211.

DOI: 10.1016/s0925-4005(03)00420-9

Google Scholar