Micro-Scale Modeling of Carbon-Fiber Reinforced Thermoplastic Materials

Article Preview

Abstract:

Thin-walled textile-reinforced composite parts possess excellent properties, including lightweight, high specific strength, internal torque and moment resistance which offer opportunities for applications in mass transit and ground transportation. In particular, the composite material is widely used in aerospace and aircraft structure. In order to estimate accurately the parameters of the constitutive law of woven fabric composite, it is recommended to canvass multi-scale modeling approaches: meso, micro and macro. In the present investigation, based on the experimental results established by carrying out observations by Scanning electron microscope (SEM), we developed a micro-scale FEM model of carbon-fiber reinforced thermoplastic using a commercial software ABAQUS. From the SEM cartography, one identified two types of representative volume elementary (RVE): periodic and random distribution of micro-fibers in the yarn. Referring to homogenization method and by applying the limits conditions to the RVE, we have extracted the coefficients of the rigidity matrix of the studied composites. In the last part of this work, we compare the results obtained by random and periodic RVE model of carbon/PPS and we compute the relative error assuming that random model gives the right value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Costanzo and L. Gray; Multiscale Modeling and Simulation of Composite Materials andStructures: Chapter 5: A Micromechanics-Based Notion of Stress for Use in the Determination of Continuum-Level Mechanical Properties via Molecular Dynamics; Springer Science (2008).

DOI: 10.1007/978-0-387-68556-4_5

Google Scholar

[2] P. Boisse and Gilles Hivet: Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension Composites: Part B 39 (2008) 345–361.

DOI: 10.1016/j.compositesb.2007.01.011

Google Scholar

[3] Gilles Hivet, Consistent 3d geometrical model of fabric elementary cell. application to a meshing preprocessor for 3d finite element analysis, Finite Elements in Analysis and Design 42 (2005) 25–49.

DOI: 10.1016/j.finel.2005.05.001

Google Scholar

[4] L. Orgéas: Woven fabric permeability: From textile deformation to fluid flow mesoscale simulations, Composites Science and Technology 68 (2008) 1624–1630.

DOI: 10.1016/j.compscitech.2008.02.027

Google Scholar

[5] Jinhuo Wang: Predictive Modeling and Experimental Measurement of Composite Forming Behavior: Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy; (2008).

Google Scholar

[6] P. Boisse: Computational determination of in-plane shear mechanical behavior of textile composite reinforcements, Computational Materials Science 40 (2007) 439–448.

DOI: 10.1016/j.commatsci.2007.01.022

Google Scholar

[7] P. Badel, S. Gauthier, E. Vidal-Sallé, P. Boisse: Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming; Composites: Part A 40 (2009) 997–1007.

DOI: 10.1016/j.compositesa.2008.04.015

Google Scholar

[8] Guillaume COUÉGNAT : Approche multiéchelle du comportement mécanique de matériaux composites à renfort tissé, thèse Université de Bordeaux 1- (2008).

Google Scholar

[9] J. Molimard : Mécanique des Matériaux composites, EMSE Version 2 (2004).

Google Scholar

[10] Faiza Ben Abdallah-Maamoun : Elaboration, caracterisation et modelisation d'un materiau composite à base d'une matrice thermoplastique renforcee par du liege, thèse ENIT (2009).

Google Scholar

[11] A. Alzina: Multiscale modelling of thermal conductivity in composite materials for cryogenic structures, Composite Structures 74 (2006) 175–185.

DOI: 10.1016/j.compstruct.2005.04.002

Google Scholar

[12] Jayesh R. Jain and Somnath Ghosh: Damage Evolution in Composites with a Homogenization-based Continuum Damage Mechanics Model; International Journal of Damage Mechanics (2009).

DOI: 10.1177/1056789508091563

Google Scholar

[13] D. Trias: Random models versus periodic models for fibre reinforced composites, Computational Materials Science 38 (2006) 316–324.

DOI: 10.1016/j.commatsci.2006.03.005

Google Scholar

[14] B. Van Den Broucke: Determination of the mechanical propreties of textile-reinforced composites taking into account textile forming parameters; Springer/ESAFORM (2010).

DOI: 10.1007/s12289-009-0680-9

Google Scholar

[15] Moran Wang, Ning Pan: Elastic property of multiphase composites with random microstructures; Journal of Computational Physics 228 (2009) 5978–5988.

DOI: 10.1016/j.jcp.2009.05.007

Google Scholar

[16] W. Voigt, ‏Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Kö‏ِrper, Wied. Ann. 38 (1889) 573–587.

DOI: 10.1002/andp.18892741206

Google Scholar

[17] A. Reuss, Berechnung der Fliessgrenz von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech. 9 (1929).

DOI: 10.1002/zamm.19290090104

Google Scholar