Cellulose Whiskers Micro-Fibers Effect in the Mechanical Proprieties of PP and PLA Composites Fibers Obtained by Spinning Process

Article Preview

Abstract:

In this study, we present the manufacturing process of two new composites materials in the form of long fibers of polylactic-acid (PLA) or polypropylene (PP), reinforced by cellulose whiskers micro-fibers loads. In order to evaluate the mechanical properties of these advanced materials, a several uniaxial tensile tests were carried out. The PP and the PLA have initially been spinning without the addition of cellulose whiskers micro-fibers. In order to study the effects of cellulose whiskers micro-fibers reinforcements in the Mechanical behavior of the PLA and PP filaments, we determinate the proprieties of these advanced material from the tensile results. For the PP composite filaments material case, the whiskers reinforcement increases Young's modulus and failure resistance, but it reduces the limit strength failure. For the PLA composites the addition of 1% wt of cellulose whiskers from the total volume fraction of the material, increase the Young’s modulus more than 50% and a decrease of the failure resistance and the limit strength of composite. The obtained composites fibers are very rigid and brittle. What follows, that the addition of cellulose whiskers micro fibers in PP matrix, provides mechanical properties more convenient compared to the PLA matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-26

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Chazeau, J. Y. Cavaillé, J. Perez, Plasticized PVC reinforced with cellulose whiskers II. Plastic Behavior, journal of polymer science, Part B, Polymer physics, 38 (2000) 383-392.

DOI: 10.1002/(sici)1099-0488(20000201)38:3<383::aid-polb5>3.0.co;2-q

Google Scholar

[2] S, Bellayer, Développement de nouvelles techniques de caractérisation qualitative et quantitative de nanocomposites à matrice polymère : Application au textile, Université des Sciences et Technologies de Lille, Thèse, (2005).

Google Scholar

[3] L. Chazeau, Etude de nanocomposites à renfort cellulosique et matrice PVC : mise en œuvre, étude structurale, comportement mécanique, Université Josef Fourier, Grenoble, Thèse (2005).

Google Scholar

[4] V. Favier, H. Chanzy, J.Y. Cavaillé, Polymer nanocomposites reinforced by cellulose microfibers, Macromolecules, 28 (1995) 6365-6367.

DOI: 10.1021/ma00122a053

Google Scholar

[5] S.B. Brahim, Etude et caractérisation mécanique d'un matériau composite structural à renfort naturel, Ecole Nationale d'ingénieurs de Tunis, Thèse (2006).

Google Scholar

[6] N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, and J.Y. Cavaillé, New Nanocomposite Materials Reinforced with Cellulose Microfibers in Atactic Polypropylene: Effect of Surface and Dispersion Characteristics: Biomacromolecules, 6 ( 2005) 2732-2739.

DOI: 10.1021/bm050222v

Google Scholar

[7] S. Elazzouzi : Auto organisation de microfibres de cellulose en suspension dans l'eau ou dans les solvants organiques apolaires, Université Josef Fourier, Grenoble, Thèse (2006).

Google Scholar

[8] S. Slarski : Développement de nouveaux filaments de polylactide nanocomposites , Université des sciences et technologies de Lille, Thèse 2006.

Google Scholar

[9] K. Zhu, S. Schmauder: Prediction of the failure properties of short fiber reinforced composites with metal and polymer matrix, Computational Materials Science 28 (2003) 743-748.

DOI: 10.1016/j.commatsci.2003.08.028

Google Scholar

[10] C. L. Tucker, E. Liang: Stiffness predictions for unidirectional short-fiber composites Review and evaluation: Composites Science and Technology 59 (1999) 655-671.

DOI: 10.1016/s0266-3538(98)00120-1

Google Scholar

[11] D. Rouby: Introduction aux matériaux composites, Composite unidirectionnel -Micromécanique des composites, INSA de Lyon (2005).

Google Scholar