Correlating Piezoelectric Polymer/Carbon Nanotubes Nanocomposite Strain Sensor with Reliability and Optimization Tools

Article Preview

Abstract:

Carbon nanotubes with polymers offers great advantages in improving material for both mechanical and electrical nanostructures. Design and fabrication have to consider that a local change in each compound accounts to the total change of physical properties in nanocomposite materials. This paper presents two parts of study. A model of strain nanosensor has been developed by using the polyvinylidne fluoride and trifluoroethylene P(VDF-TrFE) copolymer and carbon nanotubes in sandwich nanostructure [P(VDF-TrFE)/SWCNTs/ P(VDF-TrFE)] as a new application in nanotechnology domain. The experimental strain sensing was about 10-4. On the other hand, reliability-based optimization is assessed for an efficient tool to consider this nanosensors nanodevice. We put emphasis on the combination of physical modeling and reliability based design optimization of nanomaterials. After investigation, we could make suggestions such as how to improve the reliability of nanodevices and nanosystems, and how to reduce cost and economic rates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-146

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.H. Lee, H.R. Nicholls, Tactile sensing for mechatronics—a state of the art survey, Mechatronics 9 (1999) 1–33.

DOI: 10.1016/s0957-4158(98)00045-2

Google Scholar

[2] H.P. Lang, M.K. Baller, F.M. Battiston, J. Fritz, R. Berger, J.P. Ramseyer, P. Fornaro, E. Meyer, H.J. Guntherodt, J. Brugger, U. Drechsler, H. Rothuizen, M. Despont, P. Vettiger, C. Gerber, J.K. Gimzewski, The nanomechanical NOSE, in: Proceedings of the IEEE International Conference on MEMS, 1999, p.9.

DOI: 10.1109/memsys.1999.746743

Google Scholar

[3] K. Hoshino, F. Mura, I. Shimoyama, A micro-sized visual sensor based on the fly's compound eye with scanning retina, in: Proceedings of the IEEE International Conference on MEMS, 1999, p.429–434.

DOI: 10.1109/memsys.1999.746867

Google Scholar

[4] Z. Fan, J. Chen, J. Zou, D. Bullen, C. Liu, F. Delcomyn, Design and fabrication of artificial lateral-line flow sensors, J. Micromech. Microeng. 12 (2002) 655–661.

DOI: 10.1088/0960-1317/12/5/322

Google Scholar

[5] J. Chen, J.M. Engel, C. Liu, Development of polymer-based artificial haircell using surface micromachining and 3D assembly, in: Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, MA, (2003).

DOI: 10.1109/sensor.2003.1216945

Google Scholar

[6] Giovanni Pioggia, Fabio Di Francesco, Marcello Ferro, Fabiana Sorrentino, Pietro Salvo, Arti Ahluwalia, Microchim Acta (2008) 163: 57–62.

DOI: 10.1007/s00604-008-0952-y

Google Scholar

[7] Bozhi Yang, Burak Aksak, Qiao Lin, and Metin Sitti, Sensors and Actuators B: Chemical, vol. 114, no. 1, (2006) pp.254-262.

Google Scholar

[8] D.K. An, L.H. Mai, Surface Effect Humidity Sensor Based on Alumina and Porous Silicon Materials: Some Electrical Parameters, Sensitivity and Internal Noises in Comparison, Sensors, 2002, Proceedings of IEEE, Vol. 1, pp.633-640, (2002).

DOI: 10.1109/icsens.2002.1037175

Google Scholar

[9] Hughes,R. C., S. A. Casalnuovo, K. O. Wessendorf, D. J. Savignon, S. Hietala, S. V. Patel, and E. J. Heller, 2000, Integrated Chemiresistor Array for Small Sensor Platforms, SPIE Proceedings paper 4038-62, p.519.

DOI: 10.1117/12.396280

Google Scholar

[10] Janata, J., 1990, Potentiometric Microsensors, Chem. Rev., 90, 691-703.

DOI: 10.1021/cr00103a001

Google Scholar

[11] C. Fung, V. Wong, R. Chan, and W. Li. Dielectrophoretic Batch Fabrication of Bundled Carbon Nanotube Thermal Sensors. IEEE Transactions on Nanotechnology, 3: 395{403, 2004. C. K. M. Fung, M. Q. H. Zhang, Z. Dong, and W. J. Li. Fabrication of CNT Based MEMS Piezoresistive Pressure Sensors Using DEP Nanoassembly. In IEEE-Nanotechnology, volume 1, pages 199{202, Nagoya, Japan, July (2005).

DOI: 10.1109/tnano.2004.834156

Google Scholar

[12] 1. P.M. Ajayan, P. Redlich, M. Rühle; Structure of carbon nanotube-based nanocomposites, J. Microsc. -Oxford 185(2) (1997), 275–282.

Google Scholar

[13] Dharap P, Li Z, Nagarajaiah S, Barrera EV. Nanotube film based on single-walled carbon nanotubes for strain sensing. Nanotechnology 2004; 15: 379–82.

DOI: 10.1088/0957-4484/15/3/026

Google Scholar

[14] Kang I, Schulz MJ, Kim JH, Shanov V, Shi D. A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 2006; 15: 737–48.

DOI: 10.1088/0964-1726/15/3/009

Google Scholar

[15] Halary J, Stanford JL, Lovell PA, Young RJ. Raman-active nanostructured materials for use as novel stress-sensitive polymeric coatings. Mater Res Soc Symp Proc 2004; 791: 379–83.

DOI: 10.1557/proc-791-q10.11

Google Scholar

[16] Ramaratnam A, Jalili NJ. Reinforcement of piezoelectric polymers with carbon nanotubes: pathway to nextgeneration sensors. Intell Mater Syst Struct 2006; 17: 199–208.

DOI: 10.1177/1045389x06055282

Google Scholar

[17] Shimamura Y, Yasuoka T, Todoroki A. Strain sensing by using piezoresistivity of carbon nanotube/flexible-epoxy composite. In: Proceedings of the 16th International Conference on Composite Materials; 2007. p.224503 [CDROM].

Google Scholar

[18] Kang I, Schulz MJ, Lee JW, Choi GR, Jung JY, Choi JB, et al. A carbon nanotube smart material for structural health monitoring. Solid State Phenom 2007; 120: 289–96.

DOI: 10.4028/www.scientific.net/ssp.120.289

Google Scholar

[19] Pham GT, Park YB, Liang Z, Zhang C, Wang B. Processing and modeling of conductive thermoplastic/carbon nanotube film for strain sensing. Comp Part B 2008; 39: 209–16.

DOI: 10.1016/j.compositesb.2007.02.024

Google Scholar

[20] Park M, Kim H, Youngblood JP. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology 2008; 19: 055705.

DOI: 10.1088/0957-4484/19/05/055705

Google Scholar

[21] Loh KJ, Lynch JP, Shim BS, Kotov NA. Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J Intell Mater Syst Struct 2008; 19: 747–64.

DOI: 10.1177/1045389x07079872

Google Scholar

[22] Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 2008; 56: 2929–36.

DOI: 10.1016/j.actamat.2008.02.030

Google Scholar

[23] Hu N, Masuda Z, Yan C, Yamamoto G, Fukunaga H, Hashida T. Electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 2008; 19: 215701.

DOI: 10.1088/0957-4484/19/21/215701

Google Scholar

[24] C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M. -K. Schwarz, W. Bauhofer, K. Schulte, A.H. Windle; Formation of percolating networks in multi-wall carbonnanotube epoxy composites, Comp. Sci. Tech. 64(15) (2004), 2309–2316.

DOI: 10.1016/j.compscitech.2004.01.025

Google Scholar

[25] K. El-Hami, H. Yamada, and K. Matsushige 'Nanoscopic Measurements of the Electrostriction Responses in P(VDF/TrFE) Ultrathin film Copolymer by AFM', Applied Physics. A 72 , p.347. (2001).

DOI: 10.1007/s003390000702

Google Scholar

[26] K. El-Hami, M. Hara, H. Yamada, and K. Matsushige 'Nanotechnology use to fabricate ultra-high density molecular memory in P(VDF/TrFE) copolymer: Data Storage', Annales de Chimie. Sci. Mat, 26, p.217, (2001).

DOI: 10.1016/s0151-9107(01)90038-8

Google Scholar

[27] K. El-Hami, H. Yamada, and K. Matsushige 'Organic variable capacitor using piezoelectic effect ', Thin Solid Films 393, p.343, (2001).

DOI: 10.1016/s0040-6090(01)01110-5

Google Scholar

[28] K. El-Hami and K. Matsushige 'Switching the molecular chain's dipoles for data storage to write/Read/Erase/Rewrite in P(VDF/TrFE) using AFM', Nanotechnology and Precision Engineering, Vol. 2, No. 4, p.299 (2004).

Google Scholar

[29] Mohsine, A.; Kharmanda, G.; El-Hami, A. (2006), Improved hybrid method as a robust tool for reliability-based design optimization, J. Structural and Multidisciplinary Optimization, Vol 32, 203-213 (2006).

DOI: 10.1007/s00158-006-0013-2

Google Scholar

[30] A. Abo Al-kheer, A. El-Hami, M.G. Kharmanda, A.M. Mouazen, Reliability-based design for soil tillage machines Journal of Terramechanics, Volume 48, Issue 1, February 2011, Pages 57-64(2011).

DOI: 10.1016/j.jterra.2010.06.001

Google Scholar

[31] A. El Hami, B. Radi, Comparison Study of Different Reliability-Based Design Optimization Approaches , Advanced Materials Research, ISBN : 978-3-03785-163-0, Volume 274, pp.119-130 (2011).

DOI: 10.4028/www.scientific.net/amr.274.113

Google Scholar

[32] B. Radi, A. El Hami The study of the dynamic contact in ultrasonic motor   Applied Mathematical Modelling, Volume 34, Issue 12, December 2010, Pages 3767-3777(2010).

DOI: 10.1016/j.apm.2010.03.002

Google Scholar

[33] A. Mohsine, A. El Hami, A Robust Study of Reliability-Based Optimisation Methods under Eigen-frequency. International Journal of Computer Methods in Applied Mechanics and Engineering, Volume: 199, issues 17-20 March 2010, pages: 1006-1018 (2010).

DOI: 10.1016/j.cma.2009.11.012

Google Scholar