[1]
M.H. Lee, H.R. Nicholls, Tactile sensing for mechatronics—a state of the art survey, Mechatronics 9 (1999) 1–33.
DOI: 10.1016/s0957-4158(98)00045-2
Google Scholar
[2]
H.P. Lang, M.K. Baller, F.M. Battiston, J. Fritz, R. Berger, J.P. Ramseyer, P. Fornaro, E. Meyer, H.J. Guntherodt, J. Brugger, U. Drechsler, H. Rothuizen, M. Despont, P. Vettiger, C. Gerber, J.K. Gimzewski, The nanomechanical NOSE, in: Proceedings of the IEEE International Conference on MEMS, 1999, p.9.
DOI: 10.1109/memsys.1999.746743
Google Scholar
[3]
K. Hoshino, F. Mura, I. Shimoyama, A micro-sized visual sensor based on the fly's compound eye with scanning retina, in: Proceedings of the IEEE International Conference on MEMS, 1999, p.429–434.
DOI: 10.1109/memsys.1999.746867
Google Scholar
[4]
Z. Fan, J. Chen, J. Zou, D. Bullen, C. Liu, F. Delcomyn, Design and fabrication of artificial lateral-line flow sensors, J. Micromech. Microeng. 12 (2002) 655–661.
DOI: 10.1088/0960-1317/12/5/322
Google Scholar
[5]
J. Chen, J.M. Engel, C. Liu, Development of polymer-based artificial haircell using surface micromachining and 3D assembly, in: Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, MA, (2003).
DOI: 10.1109/sensor.2003.1216945
Google Scholar
[6]
Giovanni Pioggia, Fabio Di Francesco, Marcello Ferro, Fabiana Sorrentino, Pietro Salvo, Arti Ahluwalia, Microchim Acta (2008) 163: 57–62.
DOI: 10.1007/s00604-008-0952-y
Google Scholar
[7]
Bozhi Yang, Burak Aksak, Qiao Lin, and Metin Sitti, Sensors and Actuators B: Chemical, vol. 114, no. 1, (2006) pp.254-262.
Google Scholar
[8]
D.K. An, L.H. Mai, Surface Effect Humidity Sensor Based on Alumina and Porous Silicon Materials: Some Electrical Parameters, Sensitivity and Internal Noises in Comparison, Sensors, 2002, Proceedings of IEEE, Vol. 1, pp.633-640, (2002).
DOI: 10.1109/icsens.2002.1037175
Google Scholar
[9]
Hughes,R. C., S. A. Casalnuovo, K. O. Wessendorf, D. J. Savignon, S. Hietala, S. V. Patel, and E. J. Heller, 2000, Integrated Chemiresistor Array for Small Sensor Platforms, SPIE Proceedings paper 4038-62, p.519.
DOI: 10.1117/12.396280
Google Scholar
[10]
Janata, J., 1990, Potentiometric Microsensors, Chem. Rev., 90, 691-703.
DOI: 10.1021/cr00103a001
Google Scholar
[11]
C. Fung, V. Wong, R. Chan, and W. Li. Dielectrophoretic Batch Fabrication of Bundled Carbon Nanotube Thermal Sensors. IEEE Transactions on Nanotechnology, 3: 395{403, 2004. C. K. M. Fung, M. Q. H. Zhang, Z. Dong, and W. J. Li. Fabrication of CNT Based MEMS Piezoresistive Pressure Sensors Using DEP Nanoassembly. In IEEE-Nanotechnology, volume 1, pages 199{202, Nagoya, Japan, July (2005).
DOI: 10.1109/tnano.2004.834156
Google Scholar
[12]
1. P.M. Ajayan, P. Redlich, M. Rühle; Structure of carbon nanotube-based nanocomposites, J. Microsc. -Oxford 185(2) (1997), 275–282.
Google Scholar
[13]
Dharap P, Li Z, Nagarajaiah S, Barrera EV. Nanotube film based on single-walled carbon nanotubes for strain sensing. Nanotechnology 2004; 15: 379–82.
DOI: 10.1088/0957-4484/15/3/026
Google Scholar
[14]
Kang I, Schulz MJ, Kim JH, Shanov V, Shi D. A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 2006; 15: 737–48.
DOI: 10.1088/0964-1726/15/3/009
Google Scholar
[15]
Halary J, Stanford JL, Lovell PA, Young RJ. Raman-active nanostructured materials for use as novel stress-sensitive polymeric coatings. Mater Res Soc Symp Proc 2004; 791: 379–83.
DOI: 10.1557/proc-791-q10.11
Google Scholar
[16]
Ramaratnam A, Jalili NJ. Reinforcement of piezoelectric polymers with carbon nanotubes: pathway to nextgeneration sensors. Intell Mater Syst Struct 2006; 17: 199–208.
DOI: 10.1177/1045389x06055282
Google Scholar
[17]
Shimamura Y, Yasuoka T, Todoroki A. Strain sensing by using piezoresistivity of carbon nanotube/flexible-epoxy composite. In: Proceedings of the 16th International Conference on Composite Materials; 2007. p.224503 [CDROM].
Google Scholar
[18]
Kang I, Schulz MJ, Lee JW, Choi GR, Jung JY, Choi JB, et al. A carbon nanotube smart material for structural health monitoring. Solid State Phenom 2007; 120: 289–96.
DOI: 10.4028/www.scientific.net/ssp.120.289
Google Scholar
[19]
Pham GT, Park YB, Liang Z, Zhang C, Wang B. Processing and modeling of conductive thermoplastic/carbon nanotube film for strain sensing. Comp Part B 2008; 39: 209–16.
DOI: 10.1016/j.compositesb.2007.02.024
Google Scholar
[20]
Park M, Kim H, Youngblood JP. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology 2008; 19: 055705.
DOI: 10.1088/0957-4484/19/05/055705
Google Scholar
[21]
Loh KJ, Lynch JP, Shim BS, Kotov NA. Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J Intell Mater Syst Struct 2008; 19: 747–64.
DOI: 10.1177/1045389x07079872
Google Scholar
[22]
Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 2008; 56: 2929–36.
DOI: 10.1016/j.actamat.2008.02.030
Google Scholar
[23]
Hu N, Masuda Z, Yan C, Yamamoto G, Fukunaga H, Hashida T. Electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 2008; 19: 215701.
DOI: 10.1088/0957-4484/19/21/215701
Google Scholar
[24]
C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M. -K. Schwarz, W. Bauhofer, K. Schulte, A.H. Windle; Formation of percolating networks in multi-wall carbonnanotube epoxy composites, Comp. Sci. Tech. 64(15) (2004), 2309–2316.
DOI: 10.1016/j.compscitech.2004.01.025
Google Scholar
[25]
K. El-Hami, H. Yamada, and K. Matsushige 'Nanoscopic Measurements of the Electrostriction Responses in P(VDF/TrFE) Ultrathin film Copolymer by AFM', Applied Physics. A 72 , p.347. (2001).
DOI: 10.1007/s003390000702
Google Scholar
[26]
K. El-Hami, M. Hara, H. Yamada, and K. Matsushige 'Nanotechnology use to fabricate ultra-high density molecular memory in P(VDF/TrFE) copolymer: Data Storage', Annales de Chimie. Sci. Mat, 26, p.217, (2001).
DOI: 10.1016/s0151-9107(01)90038-8
Google Scholar
[27]
K. El-Hami, H. Yamada, and K. Matsushige 'Organic variable capacitor using piezoelectic effect ', Thin Solid Films 393, p.343, (2001).
DOI: 10.1016/s0040-6090(01)01110-5
Google Scholar
[28]
K. El-Hami and K. Matsushige 'Switching the molecular chain's dipoles for data storage to write/Read/Erase/Rewrite in P(VDF/TrFE) using AFM', Nanotechnology and Precision Engineering, Vol. 2, No. 4, p.299 (2004).
Google Scholar
[29]
Mohsine, A.; Kharmanda, G.; El-Hami, A. (2006), Improved hybrid method as a robust tool for reliability-based design optimization, J. Structural and Multidisciplinary Optimization, Vol 32, 203-213 (2006).
DOI: 10.1007/s00158-006-0013-2
Google Scholar
[30]
A. Abo Al-kheer, A. El-Hami, M.G. Kharmanda, A.M. Mouazen, Reliability-based design for soil tillage machines Journal of Terramechanics, Volume 48, Issue 1, February 2011, Pages 57-64(2011).
DOI: 10.1016/j.jterra.2010.06.001
Google Scholar
[31]
A. El Hami, B. Radi, Comparison Study of Different Reliability-Based Design Optimization Approaches , Advanced Materials Research, ISBN : 978-3-03785-163-0, Volume 274, pp.119-130 (2011).
DOI: 10.4028/www.scientific.net/amr.274.113
Google Scholar
[32]
B. Radi, A. El Hami The study of the dynamic contact in ultrasonic motor Applied Mathematical Modelling, Volume 34, Issue 12, December 2010, Pages 3767-3777(2010).
DOI: 10.1016/j.apm.2010.03.002
Google Scholar
[33]
A. Mohsine, A. El Hami, A Robust Study of Reliability-Based Optimisation Methods under Eigen-frequency. International Journal of Computer Methods in Applied Mechanics and Engineering, Volume: 199, issues 17-20 March 2010, pages: 1006-1018 (2010).
DOI: 10.1016/j.cma.2009.11.012
Google Scholar