Predicting the Reliability of Aligned Carbon Nanotube Bundles in Mechanical Structures

Article Preview

Abstract:

We report new experimental and theoretical study of mechanical property of aligned and nonaligned (entangled) single walled carbon nanotubes (SWCNTs), and their effect on nanostructures. Experimentally, the contact mode atomic force microscopy cantilever tip is used to measure the Young’s modulus of aligned and nonaligned SWCNTs. The measured Young's modulus of aligned SWCNT bundles ranged between 1100 GPa (1.1 TPa) and 1300 GPa (1.3 TPa) with a relative uncertainty of 5 % whereas that of the entangled SWCNT bundles ranged between 500 GPa and 700 GPa. Young’s modulus increase with aligned SWCNT bundles and then increase their performance in nanostructure comparing with entangled SWCNT bundles. We put emphasis on the combination of physical modeling and reliability based design optimization of nanomaterials. After investigation, we could make suggestions such as how to improve the reliability of nanodevices and nanosystems, and how to reduce cost and economic rates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-129

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Salvett. J. P, Bonard. J.M. Thomson, N.H. Kulik, A.J. Ferro. L, Benoit, W. Zuppiroli L, Appl, Phys, A69, p.255(1999).

Google Scholar

[2] Srivastava. D, Wei. C, Cho. K, Appl, Mech, Rev, 56, p.215. (2003).

Google Scholar

[58] D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park, and M. Tinkham, Plastic deformations in mechanically strained single-walled carbon nanotubes, Phys. Rev. B, vol. 67, p.033407–1–4, (2003).

DOI: 10.1103/physrevb.67.033407

Google Scholar

[80] M. B. Nardelli, J. L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao, and J. Bernholc, Mechanical properties, defects and electronic behavior of carbon nanotubes, Carbon, vol. 38, p.1703–11, (2000).

DOI: 10.1016/s0008-6223(99)00291-2

Google Scholar

[3] J. -P. Salvetat, G.A.D. Briggs, J. -M. Bonard, R. R. Basca, A.J. Kulik, T. St. ckli, N.A. Burnham and L. Forr. Phys. Rev. Lett. 82 (5) 944 (1999).

Google Scholar

[4] N. Koratkar, B. Q. Wei and P. M. Ajayan, Carbon Nanotube Films for Damping Applications, Advanced Materials, Volume: 14, Issue: 13-14, July 2002, pp.997-1000.

DOI: 10.1002/1521-4095(20020705)14:13/14<997::aid-adma997>3.0.co;2-y

Google Scholar

[5] L. Berhan, Y. B. Yi, A. M. Sastry, E. Munoz, M. Selvidge and R. Baughman, Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials, Journal of Applied Physics, Vol. 95, Issue: 8, April 15, 2004, pp.4335-4345.

DOI: 10.1063/1.1687995

Google Scholar

[6] Jian Ping Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Physics review letters, vol. 79, 1997, pp.1297-1300.

DOI: 10.1103/physrevlett.79.1297

Google Scholar

[7] R. Byron Pipesa, S. J. V. Franklandb, Pascal Hubertc and Erik Saether, Self-consistent properties of carbon nanotubes and hexagonal arrays as composite reinforcements, Composites Science and Technology, vol. 63, 2003, pp.1349-1358.

DOI: 10.1016/s0266-3538(03)00020-4

Google Scholar

[8] J. Cai, R. F. Bie, X. M. Tan and C. Lu, Application of the tight-binding method to the elastic modulus of C60 and carbon nanotube, Physica B, 344 (2004), p.99–102.

DOI: 10.1016/j.physb.2003.10.003

Google Scholar

[9] X. L. Gao and K. Li, A shear-lag model for carbon nanotube-reinforced polymer composites, International Journal of Solids and Structures, 42 (2005), 1649–1667.

DOI: 10.1016/j.ijsolstr.2004.08.020

Google Scholar

[10] Nicola M. Pugno, Young's modulus reduction of defective nanotubes, Applied Physics Letters, 90(2007), 043106.

DOI: 10.1063/1.2425048

Google Scholar

[11] Mohsine, A.; Kharmanda, G.; El-Hami, A. (2006), Improved hybrid method as a robust tool for reliability-based design optimization, J. Structural and Multidisciplinary Optimization, Vol 32, 203-213 (2006).

DOI: 10.1007/s00158-006-0013-2

Google Scholar

[12] A. Abo Al-kheer, A. El-Hami, M.G. Kharmanda, A.M. Mouazen, Reliability-based design for soil tillage machines Journal of Terramechanics, Volume 48, Issue 1, February 2011, Pages 57-64(2011).

DOI: 10.1016/j.jterra.2010.06.001

Google Scholar

[13] A. El Hami, B. Radi, Comparison Study of Different Reliability-Based Design Optimization Approaches , Advanced Materials Research, ISBN : 978-3-03785-163-0, Volume 274, pp.119-130 (2011).

DOI: 10.4028/www.scientific.net/amr.274.113

Google Scholar

[14] B. Radi, A. El Hami The study of the dynamic contact in ultrasonic motor   Applied Mathematical Modelling, Volume 34, Issue 12, December 2010, Pages 3767-3777(2010).

DOI: 10.1016/j.apm.2010.03.002

Google Scholar

[15] A. Mohsine, A. El Hami, A Robust Study of Reliability-Based Optimisation Methods under Eigen-frequency. International Journal of Computer Methods in Applied Mechanics and Engineering, Volume: 199, issues 17-20 March 2010, pages: 1006-1018 (2010).

DOI: 10.1016/j.cma.2009.11.012

Google Scholar