[1]
Salvett. J. P, Bonard. J.M. Thomson, N.H. Kulik, A.J. Ferro. L, Benoit, W. Zuppiroli L, Appl, Phys, A69, p.255(1999).
Google Scholar
[2]
Srivastava. D, Wei. C, Cho. K, Appl, Mech, Rev, 56, p.215. (2003).
Google Scholar
[58]
D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park, and M. Tinkham, Plastic deformations in mechanically strained single-walled carbon nanotubes, Phys. Rev. B, vol. 67, p.033407–1–4, (2003).
DOI: 10.1103/physrevb.67.033407
Google Scholar
[80]
M. B. Nardelli, J. L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao, and J. Bernholc, Mechanical properties, defects and electronic behavior of carbon nanotubes, Carbon, vol. 38, p.1703–11, (2000).
DOI: 10.1016/s0008-6223(99)00291-2
Google Scholar
[3]
J. -P. Salvetat, G.A.D. Briggs, J. -M. Bonard, R. R. Basca, A.J. Kulik, T. St. ckli, N.A. Burnham and L. Forr. Phys. Rev. Lett. 82 (5) 944 (1999).
Google Scholar
[4]
N. Koratkar, B. Q. Wei and P. M. Ajayan, Carbon Nanotube Films for Damping Applications, Advanced Materials, Volume: 14, Issue: 13-14, July 2002, pp.997-1000.
DOI: 10.1002/1521-4095(20020705)14:13/14<997::aid-adma997>3.0.co;2-y
Google Scholar
[5]
L. Berhan, Y. B. Yi, A. M. Sastry, E. Munoz, M. Selvidge and R. Baughman, Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials, Journal of Applied Physics, Vol. 95, Issue: 8, April 15, 2004, pp.4335-4345.
DOI: 10.1063/1.1687995
Google Scholar
[6]
Jian Ping Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Physics review letters, vol. 79, 1997, pp.1297-1300.
DOI: 10.1103/physrevlett.79.1297
Google Scholar
[7]
R. Byron Pipesa, S. J. V. Franklandb, Pascal Hubertc and Erik Saether, Self-consistent properties of carbon nanotubes and hexagonal arrays as composite reinforcements, Composites Science and Technology, vol. 63, 2003, pp.1349-1358.
DOI: 10.1016/s0266-3538(03)00020-4
Google Scholar
[8]
J. Cai, R. F. Bie, X. M. Tan and C. Lu, Application of the tight-binding method to the elastic modulus of C60 and carbon nanotube, Physica B, 344 (2004), p.99–102.
DOI: 10.1016/j.physb.2003.10.003
Google Scholar
[9]
X. L. Gao and K. Li, A shear-lag model for carbon nanotube-reinforced polymer composites, International Journal of Solids and Structures, 42 (2005), 1649–1667.
DOI: 10.1016/j.ijsolstr.2004.08.020
Google Scholar
[10]
Nicola M. Pugno, Young's modulus reduction of defective nanotubes, Applied Physics Letters, 90(2007), 043106.
DOI: 10.1063/1.2425048
Google Scholar
[11]
Mohsine, A.; Kharmanda, G.; El-Hami, A. (2006), Improved hybrid method as a robust tool for reliability-based design optimization, J. Structural and Multidisciplinary Optimization, Vol 32, 203-213 (2006).
DOI: 10.1007/s00158-006-0013-2
Google Scholar
[12]
A. Abo Al-kheer, A. El-Hami, M.G. Kharmanda, A.M. Mouazen, Reliability-based design for soil tillage machines Journal of Terramechanics, Volume 48, Issue 1, February 2011, Pages 57-64(2011).
DOI: 10.1016/j.jterra.2010.06.001
Google Scholar
[13]
A. El Hami, B. Radi, Comparison Study of Different Reliability-Based Design Optimization Approaches , Advanced Materials Research, ISBN : 978-3-03785-163-0, Volume 274, pp.119-130 (2011).
DOI: 10.4028/www.scientific.net/amr.274.113
Google Scholar
[14]
B. Radi, A. El Hami The study of the dynamic contact in ultrasonic motor Applied Mathematical Modelling, Volume 34, Issue 12, December 2010, Pages 3767-3777(2010).
DOI: 10.1016/j.apm.2010.03.002
Google Scholar
[15]
A. Mohsine, A. El Hami, A Robust Study of Reliability-Based Optimisation Methods under Eigen-frequency. International Journal of Computer Methods in Applied Mechanics and Engineering, Volume: 199, issues 17-20 March 2010, pages: 1006-1018 (2010).
DOI: 10.1016/j.cma.2009.11.012
Google Scholar