[1]
Papadopoulos IV, Davol P, Gorla C, Filippini M, Bernasconi A: A comparative study of multi-axial high cycle fatigue criteria of metals. Int J Fatigue 1997; 19(3): 219–35.
DOI: 10.1016/s0142-1123(96)00064-3
Google Scholar
[2]
EE Gdoutos: Frature mechanics an introduction. second edition ISBN 1-4020-3153-X (e-book) Published by Springer (2005).
Google Scholar
[3]
Destuynder Ph, Djoua M, Lescure S : Quelques remarques sur la mécanique de la rupture élastique. J Mech Theor Appl 1983; 2(1): 113–35.
Google Scholar
[4]
Erdogan F, Sih GC: On the crack extension in plates under plane loading and transverse shear. J Basic Engng 1963; 85: 519–27.
DOI: 10.1115/1.3656897
Google Scholar
[5]
Ghonem H, Dore S: Experimental study of the constant probability crack growth curves under constant amplitude loading. Engng Fract Mech 1987; 27: 1–25.
DOI: 10.1016/0013-7944(87)90002-6
Google Scholar
[6]
Wirsching PH: Fatigue reliability in welded joints of offshore structures. Int J Fatigue 1980; 2(2): 77–83.
DOI: 10.1016/0142-1123(80)90035-3
Google Scholar
[7]
Shen M. : Reliability assessment of high cycle fatigue design of gas turbine blades using the probabilistic Goodman Diagram. Int J Fatigue 1999; 21(7): 699–708.
DOI: 10.1016/s0142-1123(99)00033-x
Google Scholar
[8]
Fourlaris G, Ellwood R, Jones T. B: The reliability of test results from simple test samples in predicting the fatigue performance of automotive components. Materials & Design, Vol. 28, issue 4, (2007), pages 1198- 1210.
DOI: 10.1016/j.matdes.2006.01.005
Google Scholar
[9]
G. Cavallini and R. Lazzeri: A probabilistic approach to fatigue risk assessment in aerospace components. Engineering Fracture Mechanics, Vol. 74, issue 18, December (2007).
DOI: 10.1016/j.engfracmech.2006.04.034
Google Scholar
[10]
Webster G.A., Ezeilo A. N: Residual stress distributions and their influence on fatigue lifetimes. Int J Fatigue 2001; Vol. 23: S375-383.
DOI: 10.1016/s0142-1123(01)00133-5
Google Scholar
[11]
Yuan Hou C. : Fatigue analysis of welded joints with the aid of real three-dimensional weld toe geometry. Int J Fatigue. Vol. 29, issue4, April (2007), pages 772-785.
DOI: 10.1016/j.ijfatigue.2006.06.007
Google Scholar
[12]
Newby MJ: Markov models for fatigue crack growth. Eng. Fract Mech 1987; (4): 477–82.
Google Scholar
[13]
Bea JA, Doblaré M, Gracia L: Evaluation of the probability distribution of crack propagation life in metal fatigue by means of probabilistic finite element method and B-models. Engng Fract Mech 1999; 63: 675–711.
DOI: 10.1016/s0013-7944(99)00053-3
Google Scholar
[14]
Myötyri E, Pulkkienen U, Simola K: Application of stochastic filtering for lifetime prediction. Reliab Eng Syst Saf 2006; 91: 200–8.
Google Scholar
[15]
Zhao YG, Ono T: Oment for structural reliability. Structural Safety 2001; 23: 47–75.
Google Scholar
[16]
Ben Sghaier R, Bouraoui Ch, Fathallah R, Hassine T: Probabilistic high cycle fatigue behaviour prediction based on global approach criteria. Int J Fatigue 2007; 29: 209–221.
DOI: 10.1016/j.ijfatigue.2006.03.015
Google Scholar
[17]
Besterfield GH, Liu WK, Lawrence MA, Belytschko T: Fatigue crack growth reliability by probabilistic finite elements. Comput Methods Appl Mech Eng 1991; 86: 297–320.
DOI: 10.1016/0045-7825(91)90225-u
Google Scholar
[18]
Yu L, Purnendu KD, Zheng Y: A response surface approach to fatigue reliability of ship structures. Ships Offshore Struct 2009; 4: 253–9.
DOI: 10.1080/17445300902872010
Google Scholar
[19]
Liu WK, Chen Y, Belytschko T, Lua YJ: Three reliability methods for fatigue crack growth. Eng Fract Mech 1996; 53: 733–52.
DOI: 10.1016/s0142-1123(97)87861-9
Google Scholar
[20]
Lua YJ, Liu WK, Belytschko T: A stochastic damage model for the rupture prediction of a multi-phase solid. Part I1: statistical approach. Int J Fract Mech 1992; 55: 341–61.
DOI: 10.1007/bf00035190
Google Scholar
[21]
E.D. Leonel, A. Chateauneuf, W.S. Venturini, P. Bressolette: Coupled reliability and boundary element model for probabilistic fatigue life assessment in mixed mode crack propagation IJF 32 (2010).
DOI: 10.1016/j.ijfatigue.2010.05.001
Google Scholar
[22]
N. Nechval1, K. Nechval 2, M. Purgailis1, and V. Strelchonok3: Planning Inspections in the Case of Damage Tolerance Approach to Service of Fatigued Aircraft Structures. International Journal of Performability Engineering, July 2010, pp.
Google Scholar
[23]
Salil S. Kulkarni, Jan D. Achenbach: Optimization of inspection schedule for a surface-breaking crack subject to fatigue loading. Probabilistic Eng. Mechanics 22 (2007) 301–312.
DOI: 10.1016/j.probengmech.2007.02.002
Google Scholar
[24]
Guangwei Meng, Feng Li, Lirong Sha, Zhenping Zhou: Prediction of optimal inspection time for structural fatigue life. International Journal of Fatigue 29 (2007) 1516–1522.
DOI: 10.1016/j.ijfatigue.2006.10.029
Google Scholar
[25]
W.F. Wu a, C.C. Ni b: Statistical aspects of some fatigue crack growth data. Engineering Fracture Mechanics 74 (2007) 2952–2963.
DOI: 10.1016/j.engfracmech.2006.08.019
Google Scholar
[26]
Khaleel MA, Simonen FA: Effects of alternative inspection strategies on piping reliability. Nuc Eng Des 2000; 197: 115–40.
DOI: 10.1016/s0029-5493(99)00261-7
Google Scholar
[27]
Baker MJ, Descamps B: Reliability-based methods in the inspection planning of fixed offshore steel structures. J Constr Steel Res 1999; 52: 117–31.
DOI: 10.1016/s0143-974x(99)00031-0
Google Scholar
[28]
Straub Dniel, Faber Michanel Habbro: Risked based inspection planning for structural systems. Struct Safety 2005; 27: 335–55.
Google Scholar
[29]
H. Tanaka, M. Toyoda-Makino: Cost-based optimal relation between inspection time and assessment time for random fatigue crack growth. Prob. Engng. Mech. Vol. 13, No. 2, pp.69-76, (1998).
DOI: 10.1016/s0266-8920(97)00008-8
Google Scholar
[30]
Riahi H, Bressolette Ph, Châteauneuf A: Random fatigue crack growth in mixed mode by stochastic collocation method. Eng Frac Mech.
DOI: 10.1016/j.engfracmech.2010.07.015
Google Scholar
[31]
Chan SK, Tuba IS, Wilson WK: On the finite element method in linear fracture mechanics. Eng Fract Mech. 1970; 2(1): 1-17.
DOI: 10.1016/0013-7944(70)90026-3
Google Scholar
[32]
Guinea GV, Planas J, Eliccs M: KI evaluation by the displacement extrapolation technique. Eng Fract Mech. 2000; 66: 1-17.
Google Scholar
[33]
Parks MD: A stiffness derivative finite element technique of crack tip stress intensity factors. Int J Fract. 1974; 10(4): 243-255.
DOI: 10.1007/bf00155252
Google Scholar
[34]
Paris PC, Erdogan F: A critical analysis of crack propagation laws. J Basic Eng 1963; 85: 528–534.
DOI: 10.1115/1.3656902
Google Scholar
[35]
Rackwitz R, Fiessler B: Structural reliability under combined load sequences. Comput Struct. 1978; 9: 489-494.
Google Scholar
[36]
Lemaire M, Chateauneuf A, Mitteau JC: Fiabilité des structures: couplage mécano-fiabiliste statique, Edit. Hermes Paris; 2005, 620. 004 52 LEM.
DOI: 10.1080/17797179.2006.9737269
Google Scholar
[37]
Hasofer AM, Lind NC: Exact and invariant second moment code format. J Eng Mech iv, ASCE 1974; 100(EM1): 111–21.
DOI: 10.1061/jmcea3.0001848
Google Scholar
[38]
Ditlevsen O, Madsen HO: Structural reliability method. New York: John Wiley and Sons; (1996).
Google Scholar
[39]
Jiao G, Moan T: Methods of reliability model updating through additional events. Struc Safe. 1990; 9: 139-153.
DOI: 10.1016/0167-4730(90)90005-a
Google Scholar