Impact Depth on Glass Surface Caused by Sand Particles

Article Preview

Abstract:

Brittle materials in general and particularly glass are very sensitive to dynamic particles impacts of different nature. The ancient objects in glass (building, monuments) and some precious objects are subjected to atmospheric aggressions such as humidity, sand particles, hail,…etc.). Their surfaces are however, often exposed to severe climatic conditions in an environment where the sand wind is a daily phenomenon or beach wind. Many degradation processes due to erosion affect significantly surfaces of buildings that are part of the Cultural Heritage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-212

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Atzeni, F. Bodano, U. Sanna, N. Spanu, Surface strength: definition and testing by a sand impact method, Journal of Cultural Heritage, 7, p.201–205, (2006).

DOI: 10.1016/j.culher.2006.05.002

Google Scholar

[2] A. Bernardi, F. Becherini, G. Bassato and M. Bellio, Condensation on ancient stained glass windows and efficiency of protective glazing systems, Journal of Cultural Heritage, 7, pp.71-78, (2006).

DOI: 10.1016/j.culher.2005.10.007

Google Scholar

[3] N. Carmona, M.A. Villegas and J.M. Fernández Navarro, Study of glasses with grisailles from historic stained glass windows of the cathedral of León (Spain), Applied Surface Science, 252, pp.5936-5945, (2006).

DOI: 10.1016/j.apsusc.2005.08.023

Google Scholar

[4] B.R. Lawn, Fracture of brittle solids. 2nd Edition, Cambridge University, UK, (1993).

Google Scholar

[5] P.J. Slikkevver, P.C.P. Bouten, I. Veld, H. Scolten, Erosion and damage by sharp particles, Wear, 217, pp.237-250, (1998).

DOI: 10.1016/s0043-1648(98)00187-2

Google Scholar

[6] J. E. Ritter, P. Strzepa, K. Jakus, L. Rosenfeld, K. J. Buckman, Erosion damage in glass and alumina, Journal American Ceramic Society, 67, pp.769-772, (1984).

DOI: 10.1111/j.1151-2916.1984.tb19515.x

Google Scholar

[7] A.G. Evans, M.E. Gulden, M. Rosenblatt, Impact damage in brittle materials in the elastic-plastic response regime, Proc. R. Soc. London, Ser. A, 361, pp.343-345, (1978).

Google Scholar

[8] T. Michalske, B. Bunker, La fracture du verre, Pour la science, pp.52-53, (1998).

Google Scholar

[9] A. Franco, S.G. Roberts, The effect of impact angle on the erosion rate of polycristalline a-Al2O3 , Journal European Ceramic Society, 18, pp.269-270, (1998).

DOI: 10.1016/s0955-2219(97)00121-0

Google Scholar

[10] S.M. Wiederhorn, B.J. Hockey, Effect of material parameters on the erosion resistance of brittle materials, Journal of Material Science, 18, pp.766-768, (1983).

DOI: 10.1007/bf00745575

Google Scholar

[11] M. Buijs, Erosion of glass as modeled by indentation theory, Journal of the American Ceramic Society, 77, pp.1676-1678, (1994).

DOI: 10.1111/j.1151-2916.1994.tb09777.x

Google Scholar

[12] J. Salomonson, D. Rowcliffe Journal American Ceramic Society, 78, pp.173-177, (1995).

Google Scholar

[13] Y.I. Oka, M. Matsumura, T. Kawabata, Relation chip between surface hardness and erosion damage caused by solid particle impact, Wear 162-164, pp.688-695, (1993).

DOI: 10.1016/0043-1648(93)90067-v

Google Scholar

[14] A.J. Sparks and I. M Hutchings, Wear 149, pp.99-110, (1991).

Google Scholar

[15] S. Spinivasan, R.O. Scattergood, On lateral cracks in glass, Journal of material science, 22, pp.3463-3469, (1987).

Google Scholar

[16] D.B. Marshall, Journal American Ceramic Society, 67, pp.57-60, (1984).

Google Scholar

[17] A.W. Ruff, S.M. Wiederhorn, Treat. Mater. Sci. and Techn. 16, p.69, (1979).

Google Scholar

[18] G.L. Sheldon and I. Finnie, J. Eng. Ind. 88, pp.387-392, (1966).

Google Scholar

[19] S. Bouzid, N. Bouaouadja, Z. Azari, G. Pluvinage, Characterisation of Soda-Lime Glass Eroded by Simulated Sand Storm., 5th European Society on Glass Conference, (1999), Praha.

Google Scholar

[20] D.M. Lloyd, E.A. Rogers, J.E. Oakey and A.J. Pittaway, Mat. Sci. Eng. 88, pp.295-01, (1987).

Google Scholar

[21] A.W. Ruff and L.K. Ives, Measurement of solid particle velocity in erosive wear. Wear 35 p.195–199, (1975).

DOI: 10.1016/0043-1648(75)90154-4

Google Scholar

[22] P. Chevalier, Thèse de Doctorat, Ecole centrale de Lyon, France (1994).

Google Scholar

[23] S.R. Choi, J.A. Salem, Interaction of cracks between two adjacent indents in glass, Journal of Material Science, 28, pp.501-505, (1993).

DOI: 10.1007/bf00357830

Google Scholar

[24] Goldsmith. W, Taylor.R. L, Experimental Mechanics, 16, pp.81-87, (1976).

Google Scholar

[25] Y.I. Oka, M. Nishimura, K. Nagahashi, M. Matsumura, Wear, 250, pp.736-743, (2001).

Google Scholar

[26] S. M. Wiederhorn, B.R. Lawn, Strength degradation of glass impacted with sharp particles: I. Annealed surfaces, Journal American Ceramic Society, 62, pp.67-70, (1979).

DOI: 10.1111/j.1151-2916.1979.tb18808.x

Google Scholar

[27] J. Lemaitre, Micro-mechanics of crack initiation, International Journal of Fracture, 42, pp.87-88, (1990).

Google Scholar

[28] K. Zeng, D. Rowcliffe, Experimental measurement of residual stress field around a sharp indentation in glass, Journal American Ceramic Society, 77, pp.524-530, (1994).

DOI: 10.1111/j.1151-2916.1994.tb07025.x

Google Scholar

[29] A. Nyoungue; Z. Azari ; M. Abbadi; et al, Glass damage by impact spallation , Materials science and engineering a-structural materials properties microstructure and processing  Volume: 407   Issue: 1-2, pp.256-264, ( 2005).

DOI: 10.1016/j.msea.2005.07.031

Google Scholar

[30] J. Ismail, F. Zaïri, M. Naït-abdelaziz, S. Bouzid, Z. Azari Experimental and numerical investigations on erosion damage in glass by impact of small-sized particles, Wear, Issues 5-6, pages 817-826, (2011).

DOI: 10.1016/j.wear.2011.03.009

Google Scholar