Preparation of Ultra-Fine Powder Using Supercritical Fluids: A Review

Article Preview

Abstract:

The size of ultrafine particles ranges between 1~1000nm, including metal, non-metallic, organic, inorganic and biological powder materials. Because of its inherent surface effect, small size effect and quantum effect, it has special optical properties, thermal properties, magnetic properties and mechanical properties which had been widely used in various industrial fields. Supercritical fluid technology has been used to obtain ultra-fine powder of several kind of materials. This work is focused on the systematic production of ultra-fine powder using RESS and SAS process. A systematic summary is made and different measures adopted according to the related circumstances are presented. We also summarize the effect of the process parameters of RESS and SAS process. The ongoing and more extensive research on mechanism and control measures of size, morphology and size distribution of particle should provide a better understanding of particle formation mechanism and achieve the goal of integrated use of different measures to control particle preparation process in the near future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

509-515

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Reverchon, R. Adami: J. Supercrit. Fluids Vol. 37 (2006), p.1.

Google Scholar

[2] E.L.C. Cheah, L.W. Chan and P.W.S. Heng: Asian J. Pharm. Sci. Vol. 1 (2006), p.59.

Google Scholar

[3] D.J. Jarmer, C.S. Lengsfeld, K.S. Anseth and et al: J. Pharm. Sci. Vol. 94 (2005), p.2688.

Google Scholar

[4] D.W. Matson, J.L. Fulton, R.C. Petersen and et al: Ind. Eng. Chem. Res. Vol. 26 (1987), p.2298.

Google Scholar

[5] R.C. Petersen, D.W. Matson and R.D. Smith: Polym. Eng. Sci. Vol. 27 (1987), p.1693.

Google Scholar

[6] J.W. Tom, P.G. Debenedetti: Biotechnol. Prog. Vol. 7 (1991), p.403.

Google Scholar

[7] E. Reverchon, G. Della Porta, I. De Rosa and et al: J. Supercrit. Fluids Vol. 18 (2000), p.239.

Google Scholar

[8] N. Elvassore, A. Bertucco and P. Caliceti: J. Pharm. Sci. Vol. 90 (2001), p.1628.

Google Scholar

[9] R. Ghaderi, P. Artursson and J. Carlfors: Pharm. Res. Vol. 16 (1999), p.676.

Google Scholar

[10] E. Weidner, Z. Knez and Z. Novak: WO Patent 21688 (1995).

Google Scholar

[11] J. Kerc, S. Srcic, Z. Knez and et al: Int. J. Pharm. Vol. 182 (1999), p.33.

Google Scholar

[12] Y. Liu, W. Q. Wang and A J Li: Chemical Engineering, Vol. 32 (2004), p.44.

Google Scholar

[13] X. W. Liu, Z. Y. Li and W. Han: Chemical Engineering, Vol. 34 (2006), p.5.

Google Scholar

[14] C. Domingo, E. M. Berends: J. Crystal Growth, Vol. 166 (1996), p.989.

Google Scholar

[15] J. R. Turner, T. T. Kodas and S. K. Friedlander: Chem. Phys., Vol. 88 (1988), p.457.

Google Scholar

[16] A. Z. Hezave, S. Aftab and F. Esmaeilzadeh: J. Supercrit. Fluids Vol. 55 (2010), p.316.

Google Scholar

[17] P. Subra, P. Boissinot and S. Benzaghou: Proceedings of the Fifth Meeting on Supercritical Fluid Materials and Natural Product Processing, tome Vol. 1 (1998), p.307.

Google Scholar

[18] G. T. Liu, K. Nagahama: Ind. and Eng. Chem. Research Vol. 35 (1996), p.4626.

Google Scholar

[19] N. Yildiz, S. Tuna, O. Doker and et al: J. Supercritical Fluids Vol. 41 (2007), p.440.

Google Scholar

[20] A.Z. Hezave, F. Esmaeilzade: J. Supercritical Fluids Vol. 52 (2010), p.84.

Google Scholar

[21] E. Reverchon, G. Donsí and D. Gorgoglione: J. Supercritical Fluids Vol. 6 (1993), p.241.

Google Scholar

[22] R. S. Mohamed, P. G. Debenedetti and R. K. PruďHomme: AIChE J. Vol 35 (1989), p.325.

Google Scholar

[23] R. C. Peterson and D. W. Matson: Poly. Eng. and Sci. Vol. 27 (1987), p.1693.

Google Scholar

[24] J. T. Huang, T. Moriyoshi: J. of Supercritical Fluids Vol. 37 (2006), p.292.

Google Scholar

[25] M. Türk, D. Bolten: J. of Supercritical Fluids Vol. 55 (2010), p.778.

Google Scholar

[26] A. H. Chiou, M. K. Yeh, C.Y. Chen and et al: J. of Supercritical Fluids Vol. 42 (2007), p.120.

Google Scholar

[27] B. M. Lee, D. S. Kim and Y. H. Lee: J. of Supercritical Fluids Vol. 57 (2011), p.251.

Google Scholar

[28] P. Chattopadhyay, R. B. Gupta: AIChE J. Vol. 48 (2002), p.235.

Google Scholar

[29] B.Y. Shekunov, J. Baldyga and P. York: Chem. Eng. Sci. Vol. 56 (2001), p.2421.

Google Scholar

[30] B.Y. Shekunov, P. York: J. Cryst. Growth Vol. 211 (2000), p.122.

Google Scholar

[31] J. Lin, M. Rodrigues, A. Paiva, and et al: AIChE J. Vol. 51 (2005), p.2343.

Google Scholar

[32] J. Bleich, B.W. Muller and W. Wabmus: Int. J. Pharm. Vol. 97 (1993), p.111.

Google Scholar

[33] A. M. Juppo, C. Boissier and C. Khoo: Int. J. Pharm. Vol. 250 (2003), p.385.

Google Scholar

[34] R. Falk, T. W. Randolph, J. D. Meyer, and et al: J. Control Release Vol. 44 (1997), p.77.

Google Scholar

[35] Y. Gao, T. K. Mulenda , Y. F. Shi and et al: J. Supercrit. Fluids Vol. 13 (1998), p.369.

Google Scholar

[36] L. Q. Wen, J. L. Zhang: Energetic. Materials, Vol. 2005(5), p.323.

Google Scholar

[37] E. Reverchon: J. of Supercritical Fluids, Vol. 15(1999), p.1.

Google Scholar

[38] R. T. Y. Lima, K. N. Wai and B. H. Reginald: J. of Supercritical Fluids Vol. 53 (2010), p.179.

Google Scholar

[39] I. N. Uzun, O. S. and S. Dincer: J. of Supercritical Fluids Vol. 55 (2011), p.1059.

Google Scholar

[40] W. L. Priamo, A. M. de Cezaro, and et al: J. of Supercritical Fluids Vol. 54 (2010), p.103.

Google Scholar

[41] S. Naik, D. Patel and N. S. B. Misra: J. of Supercritical Fluids Vol. 54 (2010), p.110.

Google Scholar

[42] E.M. Berends: Ph.D. Thesis, Technical University, Delft, Netherlands, (1994).

Google Scholar

[43] G. R. Shaub, J. F. Brennecke and M. J. McCready: J. Supercrit. Fluids Vol. 8 (1995), p.318.

Google Scholar