Fabrication of a Novel Catalyst Support with Hierarchical Pore Structure

Article Preview

Abstract:

A novel catalyst support with trimodal pore structure was hydrothermally synthesized by building up nano-particles of titanium silicalite-1 inside the macroporous system of silica gel using the tetrapropylammonium hydroxide (TPAOH) as template, titanium (IV) tetrabutoxide monomer (TBOT) as titanium source and the silica gel with macropores as in situ silicon source as well as matrices. The prepared support exhibited intrinsic pore of TS-1, intercrystalline mesopores and residual macropores of silica gel, accomplishing the interconnection of micro-, meso-, and macrpores.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

530-533

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Tsubaki, Y. Zhang, S. Sun, H. Mori, X. Li and K. Fujimoto: Catal. Comm. Vol. 2, (2001), p.311.

Google Scholar

[2] Y. Zhang, Y. Yoneyama and N. Tsubaki: Chem. Comm. Vol. 11, (2002), p.1216.

Google Scholar

[3] Y. Zhang, Y. Yoneyama, K. Fujimoto and N. Tsubaki: Top. Catal. Vol. 26, (2003), p.127.

Google Scholar

[4] Y. Zhang, R. Q. Yang, M. Koike, H. Sukamon, V. Tharapong and N. Tsubaki: Appl. Catal. A: Gen. Vol. 292, (2005), pp.252-258.

Google Scholar

[5] Y. Zhang, M. Koike and N. Tsubaki: Catal. Letter, Vol. 91, (2005), p.193.

Google Scholar

[6] Y. Zhang, J. Bao, S. Nagamori and N. Tsubaki: Appl. Catal. A: Gen. Vol. 352, (2009), p.277.

Google Scholar

[7] I. Schmidt, C. Madsen and C. J. H. Jacobsen: Inorg. Chem. Vol. 39, (2000), p.2279.

Google Scholar

[8] I. Schmidt, A. Boisen, E. Gustavsson, K. Ståhl, S. Pehrson, S. Dahl, A. Carlsson and C. J. H. Jacobsen: Chem. Mater. Vol. 13, (2001), pp.4416-4418.

DOI: 10.1021/cm011206h

Google Scholar

[9] D. On, S. Kaliaguine: Angew. Chem. Int. Ed. Vol. 40, (2001), p.3248.

Google Scholar

[10] S. Mintova and T. Bein: Adv. Mater. Vol. 13, (2001), p.1880.

Google Scholar

[11] S. Mintova, N. H. Olson, J. Senker and T. Bein: Angew. Chem. Int. Ed. Vol. 41, (2002), p.2558.

Google Scholar

[12] A. Dong, Y. Wang, Y. Tang, Y. Zhang, N. Ren and Z. Gao: Adv. Mater. Vol. 14, (2002), p.1506.

Google Scholar

[13] S. Kim, J. Shab and T. J. Pinnavaia: Chem. Mater. Vol. 15, (2003), p.1664.

Google Scholar

[14] Y. S. Tao, H. Kanoh and K. Kaneko: J. Am. Chem. Soc. Vol. 125, (2003), p.6044.

Google Scholar

[15] F. S. Xiao, L. Wang, C. Yin, K. Lin, Y. Di, J. Li, R. Xu, D. S. Su, R. Schlögl, T. Yokoi and T. Tatsumi: Angew. Chem. Int. Ed. Vol. 45, (2006), p.3090.

DOI: 10.1002/anie.200600241

Google Scholar

[16] H. Wang and T. J. Pinnavaia: Angew. Chem. Int. Ed. Vol. 45, (2006), p.7603.

Google Scholar

[17] K. Egeblad, C. H. Christensen, M. Kustova and Claus H. Christensen: Chem. Mater. Vol. 20, (2008), p.946.

Google Scholar

[18] M. Hartmann: Angew. Chem. Int. Ed. Vol. 43, (2004), p.5880.

Google Scholar

[19] J. C. Groen, W. Zhu, S. Brouwer, S. J. Huynink, F. Kapteijn, J. A. Moulijn and J. Pérez-Ramírez: J. Am. Chem. Soc. Vol. 129, (2007), p.355.

DOI: 10.1021/ja065737o

Google Scholar