Lifetime Prediction of Steam Turbine Components under Multiaxial Thermo-Mechanical Fatigue Loading

Article Preview

Abstract:

Lifetime prediction of steam turbine components under biaxial thermo-mechanical fatigue (TMF) loading of modern high chromium steel is prerequisite for design optimization. In this paper a phenomenological method which envelopes the synthesis of stress strain hysteresis loops and damage assessment under considering creep fatigue interaction is extended to multiaxial loadings. It is proposed as a post processing step depending on the results of a preceding finite element analysis based on a constitutive material model. Recalculation of biaxial service-type experiments on cruciform specimen of modern high chromium rotor steel 10CrMoWVNbN shows satisfactory results for lifetime estimation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-259

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Scholz and C. Berger: Deformation and life assessment of high temperature materials under creep fatigue loading, Mat. -wiss. u. Werkstofftechn. 36, No. 11, pp.722-730 (2005).

DOI: 10.1002/mawe.200500941

Google Scholar

[2] W. Ramberg and W.R. Osgood: Technical Report No. 902, NACA (1943).

Google Scholar

[3] F.H. Norton: The creep of steel at high temperature, McGraw Hill, (1929)

Google Scholar

[4] S. Taira: In: Structures, pp.96-119, N.J. Hoff (Ed.), Academic Press, (1962).

Google Scholar

[5] L. Cui: Zum Einfluss der komplexen Kriechermüdungsbeanspruchung auf die Lebensdauer am Beispiel des Turbinenwerkstoffes X12CrMoWVNbN10-1-1, Dr.-Ing. Diss., TU-Darmstadt, D17 (2011).

Google Scholar

[6] H. Haase: Betriebsähnliches Langzeitdehnwechselverhalten moderner martensitischer 9 bis 10%Cr-Stähle, Dr.-Ing. Diss., TU-Darmstadt, D17 (2004).

Google Scholar

[7] M. Schwienheer: Hochtemperaturverhalten der 600°C-Dampftubinenstähle (G)X12CrMoWVNbN10-1-1, Dr.-Ing. Diss., TU-Darmstadt, D17 (2004).

Google Scholar

[8] A. Samir, A. Simon, A. Scholz and C. Berger: Service-type creep-fatigue experiments with cruciform specimens and modelling of deformation, Int. J. Fatigue, Vol. 28, Iss. 5-6, pp.643-651 (2006).

DOI: 10.1016/j.ijfatigue.2005.08.010

Google Scholar

[9] Draft International Standard ISO/DIS 12111, ISO/TC 14/SC 5, 2009, Metallic materials – Fatigue testing – Strain-controlled thermomechanical fa-tigue testing method

DOI: 10.3403/30096503

Google Scholar

[10] S. Zhang and M. Sakane: Multiaxial creep–fatigue life prediction for cruciform specimen, Int. J. Fatigue, Vol. 29, Iss. 12, pp.2191-2199 (2007).

DOI: 10.1016/j.ijfatigue.2006.12.012

Google Scholar

[11] P. Wang, M. Lyschik, A. Scholz and C. Berger: An extrapolation method applied to a constitutive material model to recalculate creep fatigue experiments, the 9th Intern. Conf. on Multiaxial Fatigue & Fracture (ICMFF9) Parma (Italy), 7 - 9 June, 2010.

DOI: 10.1016/j.ijfatigue.2012.04.018

Google Scholar

[12] P. Wang: Fortschrittliche Methoden zur Anwendung bei einem konstitutiven Materialmodell für Kriech- und Kriechermüdungsbeanspruchung, Dr.-Ing. Diss., TU-Darmstadt, D17 (2011), in print.

Google Scholar