[1]
Murakami Y, Huang ZY. Elastic plastic analysis of a semi-infinite plate under various loadings by a combination of the finite element method and the body force method. A Hen/Trans. JSME. 504(54): 1525-1533. (1988).
DOI: 10.1299/kikaia.54.1525
Google Scholar
[2]
Agrawal GL, Gottenbrg WG. Response of a semi-infinite elastic solid to an arbitrary line load along the axis. ASME Pap. (1971).
DOI: 10.1115/1.3408974
Google Scholar
[3]
Li S. Solution to line loading of a semi-infinite solid in gradient elasticity. In. J. Solids and Structures; 41(13): 3395-3410. (2004).
DOI: 10.1016/j.ijsolstr.2004.02.010
Google Scholar
[4]
Erguven ME. Torsional loading of an elastic transversely isotropic nonhomogeneous semi-infinite solid. Acta Mech. 61(1-4): 165-174. (1986).
DOI: 10.1007/bf01176371
Google Scholar
[5]
Barber JR. Indentationof the semi-infinite elastic solid by a concavy rigid punch. J. of Elasticity. 6(2): 149-159. (1976).
DOI: 10.1007/bf00041783
Google Scholar
[6]
Every AG, Kim KY, Maznev AA. Elastodynamic response of a semi-infinite anisotropic solid to sudden surface loading. J. Acoustical Society of America. 102(3): 1346-1355. (1997).
DOI: 10.1121/1.420053
Google Scholar
[7]
Ru CQ. Surface instability of a semi-infinite elastic body under surface van der waals forces. J. of App. Mech. Trans. ASME. 71(1): 138-140. (2004).
DOI: 10.1115/1.1636791
Google Scholar
[8]
Ivering, JW. Bond of tube in semi-infinite elastic solid. J. of Strain Analysis for Engr. Design. 15(2): 53-62. (1980).
DOI: 10.1243/03093247v152053
Google Scholar
[9]
Chen, BJ, Xiao ZM., and Liew KM. Electro-elastic stress analysis for a wedge -shaped crack interacting with a screw dislocation in piezoelectric solid. Int J. Engg. Sci. 40(6): 621-635. (2002).
DOI: 10.1016/s0020-7225(01)00093-3
Google Scholar
[10]
Yamashita N, and Katayama G. Analysis of the stress distribution in a semi-infinite elastic body subject to periodically spaced semi-ellipsoid contact pressures. J. JSLE. 21(10): 679-686. (1976).
Google Scholar
[11]
Ejike U. Boundary effects due to body couplies in the interior of a semi-infinite elastic solid. Int J Eng. Sci. 8(11): 909-24. (1970).
DOI: 10.1016/0020-7225(70)90070-4
Google Scholar
[12]
Fokkema, JF. Diffraction of elastic waves by the periodic boundary of a semi-infinite solid. Proc. of Royal Soc. of London, Series A: Math. Phys. Sci. 363(1715): 487-502. (1978).
DOI: 10.1098/rspa.1978.0179
Google Scholar
[13]
Hasebe N, Sugimoto T, and Nakamura T. Longitudinal shear problem for an elastic body with fixed edges. J. Appl. Mech., Trans. ASME. 53(4): 814-818. (1986).
DOI: 10.1115/1.3171863
Google Scholar
[14]
Sousa JB, Weissman, SL, Sackman JL, and Monismith CL. Nonlinear elastic viscous with damage model to predict permanent deformation of asphalt concrete mixes. TRB 1384, Washington, DC. 80-93. (1993).
Google Scholar
[15]
Helwany S, Dyer J, and Leidy J. Finite-Element analyses of flexible pavements. J. Transp. Engrg., ASCE. 124(5): 491-499. (1998).
DOI: 10.1061/(asce)0733-947x(1998)124:5(491)
Google Scholar
[16]
Huhtala M, and Pihlajamäki J. New concepts on load equivalency measurements. Proc. 7th Int. Conf. on Asphalt Pavements. 194-208. (1992).
Google Scholar
[17]
Siddharthan R, Yao J, and Sebaaly PE. Pavement strain from moving dynamic 3D load distribution. J. Transp. Engrg, ASCE. 124(6): 557-566. (1998).
DOI: 10.1061/(asce)0733-947x(1998)124:6(557)
Google Scholar
[18]
Hard MSA, and Cebon D. Response of continuous pavements to moving dynamic loads. J. Engrg. Mech. ASCE. 119(9): 1762-1780. (1993).
DOI: 10.1061/(asce)0733-9399(1993)119:9(1762)
Google Scholar
[19]
Zhou FJ, Sun LJ. Three dimensional finite element analysis of the stress caused by load in asphalt overlayers. China J. Highway transp. 12 (4): 1-6. (1999).
Google Scholar
[20]
Kuo MC, Hall KT, and Darter M. Three-dimensional finite element model for analysis of concrete pavement support. Trans. Res. Rec. 1505. TRB. Washington DC. 119 - 127. (1995).
Google Scholar
[21]
Xu ZL. Elasticity Theory, High Education Publish House, Beijing (in Chinese). (2005).
Google Scholar
[22]
Komvopoulos K. Finite element analysis of a layered elastic solid in normal contact with a rigid surface. J Tribology, ASME. 110(3): 477-485. (1988).
DOI: 10.1115/1.3261653
Google Scholar
[23]
Chou, Y. T., Larew, H. G. Stresses and deflections in viscoelastic pavement system under a moving load. H.R.R. 282. 25-40. (1969).
Google Scholar