Biosorption of Precious Metal Ions by Magnetically Activated Sludge Cultured Bacteria

Article Preview

Abstract:

Although biosorption for reclaiming single precious metal was frequently reported, the actual subsistent adsorptive competition among different metal ions sometimes shows diverging reinforcement or prohibition for different species. This study tries to screen bacteria that are able to absorb certain precious metals with high selectivity under competitive conditions. The activated sludge was cultivated from enrichment by magnetotactic bacteria medium proposed by Blakemore. Then four microbes, microaerobic bacteria(A) acclimated micro-aerobic bacteria (B), anaerobic bacteria(C) and acclimated anaerobic bacteria(D) were obtained for the following adsorption experiments. The four microbes have high removal efficiency of Au3+ both in its unitary and Au3+-Cu2+ binary system. The microaerobic bacteria (B) are good metal catchers and carriers for the uptake of gold in aquatic solution with coexistence of copper. In Pd2+-Cu2+system, there is a collaborative adsorption effect, especially on (B).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-51

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Ramesh, H. Hasegawa, W. Sugimoto, T. Maki and K. Ueda: Bioresour. Technol. 99(2008), p.3801.

Google Scholar

[2] C.P. Gomes, M.F. Almeida and J.M. Loureiro: Separation and Purification Technology 24(2001), p.35.

Google Scholar

[3] X.W. Sun, Y. Charles Guan and Kenneth N. Han: Metallurgical and Materials Transactions 27(1996), p.355.

Google Scholar

[4] K. Takahiko, M. Goto and F. Nakashio: Journal of Membrane Science 120(1996), p.77.

Google Scholar

[5] M.B. Mooiman, J.D. Miller: Hydrometallurgy 27(1991), p.29.

Google Scholar

[6] D. Nilanjana: Hydrometallurgy 103(2010), p.180.

Google Scholar

[7] Y.Y. Liu, J.K. Fu, H.B. Hu, D.L. Tang, Z.M. Ni and X.S. Yu: Chin. Sci. Bulletin 46(2001), p.1709.

Google Scholar

[8] T. Tsuruta and J. Gen: Appl. Microbiol. 50(2004), p.221.

Google Scholar

[9] Y.Y. Liu, J.K. Fu, R. Li, X.L. Zhang and Z.Y. Hu: Acta. Microbiol. Sin. (Chinese) 40(2000), p.535.

Google Scholar

[10] A. Sari, D. Mendil, M. Tuzen and M. Soylak: J. Hazard. Mater. 162 (2009), p.874.

Google Scholar

[11] Y.Y. Liu, J.K. Fu, P. Chen, X.S. Yu, and P.C. Yang: Acta Microbiol. Sin. 40(2000), p.425.

Google Scholar

[12] Y.Y. Liu, J.K. Fu, Z.H. Zhou, X.S. Yu, B.X. Yao. Chem. Res. Chin. Univ. 16(2000), p.1.

Google Scholar

[13] R.P. Blakemore: J. Sci. 190(1975), p.377.

Google Scholar

[14] G. Gamez, J.L. Gardea-Torresdey, K.J. Tiemann, J. Parsons, K. Dokken and M. Jose Yacaman: Advances in Environmental Research 7(2003), p.563.

DOI: 10.1016/s1093-0191(02)00021-7

Google Scholar

[15] I. Vargas, L. Macaskie and E. Guibal: Journal of Chemical Technology and Biotechnology 79(2004), p.49.

Google Scholar

[16] H.P. Song, X.G. Li, J.S. Sun, X.H. Yin, Y.H. Wang and Z.H. Wu: Chin. J. Chem. Eng. 15(2007), p.847.

Google Scholar

[17] C. Mack, B. Wilhelmi, J.R. Duncan and J.E. Burgess: Biotechnology Advances 25(2007), p.264.

Google Scholar

[18] A. Sari, M. Durali, M. Tuzen and M. Soylak: Journal of Hazardous Materials 162(2009), p.874.

Google Scholar

[19] F. Beolchini, F. Pagnanelli, A.P. Reverberi, F. Veglio. Ind. Eng. Chem. Res., (42)2003, p.4881.

Google Scholar

[20] E. Torres, Y.N. Mata, M.L. Blázquez, J.A. Muñoz, F. González and A. Ballester: Langmuir 21(2005), p.7951.

Google Scholar

[21] D. Parajuli, K. Inoue, H. Kawakita, K. Ohto, H. Harada and M. Funaoka, Miner. Eng. 21(2008), p.61.

Google Scholar

[22] Y. Sag, B. Akcael and T. Kutsal: Pro. Biochem 37(2001), p.35.

Google Scholar