Nanocrystalline Silicon Films with High Conductivity Prepared by Hot Wire Chemical Vapor Deposition

Article Preview

Abstract:

Nanocrystalline silicon (nc-Si:H) grown by hot-wire chemical vapor deposition (HWCVD). We report on the effects of B2H6 doping ratio on the microstructural and optoelectrical properties of the p-type nc-Si:H thin films grown by HWCVD at low substrate temperature of 200 °C. An attempt has been made to elucidate the boron doping mechanism of the p-type nc-Si:H thin films deposited by HWCVD and the correlation between the B2H6 ratio, crystalline volume fraction, optical band gap and dark conductivity. Characterization of these films from Raman spectroscopy revealed that the high conductive film consists of mixed phase of nanocrystalline silicon embedded in an amorphous network. A small increase in B2H6 doping ratio showed marked effect on film microstructure. At the optimal condition, high dark conductivity (8 S/cm) with high optical band gap (~2.0 eV) was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

513-518

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.Y. Hu, R.F. O'Connell, Y.L. He, M.B. Yu: J. Appl. Phys. Vol. 78 (1995), p.3945.

Google Scholar

[2] R. Saleh, N.H. Nickel: Thin Solid Films Vol. 427 (2003), p.266.

Google Scholar

[3] P. Pernet, R. Felder, M. Goetz, H. Keppner, D. Fischer, A. Shah, Proc. Of 14th ECPV Solar Energy Conf., 1997, p.2339.

Google Scholar

[4] S. Klein, F. Finger, R. Carius, M. Stutzmann: J. Appl. Phys. Vol. 98 (2005), p.024905.

Google Scholar

[5] R.O. Dusane, S.R. Dusane, V.G. Bhide, S.T. Kshirsagar: Appl. Phys. Lett. Vol. 63 (1993), p.2201.

DOI: 10.1063/1.110801

Google Scholar

[6] P. Brogueira, J.P. Conde, S. Arekat, V. Chu: J. Appl. Phys. Vol. 79 (1996), p.8748.

Google Scholar

[7] M. Heintze, R. Zedlitz, H.N. Wanka, M.B. Schubert: J. App. Phys. Vol. 79 (1996), p.2698.

Google Scholar

[8] J.P. Conde, P. Brogueira, V. Chu: Philos. Mag. B Vol. 76 (1997), p.299.

Google Scholar

[9] R. Bruggemann, A. Hierzenberger, P. Reinig, M. Rojahn, M.B. Schubert, S. Schweizer, H.N. Wanka, I. Zrinscak: J. Non-Cryst. Solids Vol. 227-230 (1998), p.982.

DOI: 10.1016/s0022-3093(98)00260-9

Google Scholar

[10] P. Brogueira, V. Chu, A.C. Ferro, J.P. Conde: J. Vac. Sci. Technol. A Vol. 15 (1997), p.2968.

Google Scholar

[11] M. Faraji, S.V. Rajarshi, S.V. Ghaisas, S.T. Kshirsagar and V.G. Bhide, Proceedings of the NSEC, Pune, (1991).

Google Scholar

[12] M. Faraji, Ph. D Thesis, University of Pune, (1994).

Google Scholar

[12] C. Smit, R.A.C.M.M. van Swaaij, H. Donker, A.M.H.N. Petit, W.M.M. Kessels, M.C.M. van de Sanden: J. Appl. Phys. Vol. 94 (2003), p.3582.

Google Scholar

[13] P. Brogueira, V. Chu, A.C. Ferro, J.P. Conde: J. Vac. Sci. Technol. A Vol. 15 (1997), 2968.

Google Scholar

[14] J. Puigdollers, J. Cifre, M.C. Polo, J.M. Asensi, J. Bertomeu, J. Andreu, A. Lloret: Appl. Surf. Sci. Vol. 86 (1995), 600.

DOI: 10.1016/0169-4332(94)00420-x

Google Scholar

[15] H. Chen, M.H. Gullanar, W.Z. Shen: J. Cryst. Growth Vol. 260 (2004), p.91.

Google Scholar

[16] J. Perrin, Y. Takeda, N. Hirano, Y. Takeuchi, A. Matsuda: Surf. Sci. Vol. 210 (1989), p.114.

Google Scholar

[17] K. Shimakawa: J. Non-Cryst. Solids Vol. 223 (2000), p.266.

Google Scholar

[18] W. Beyer, R. Carius, M. Lejeune, J. Muller, B. Rech, U. Zastrow: J. Non-Cryst. Solids Vol. 338–340 (2004), p.147.

DOI: 10.1016/j.jnoncrysol.2004.02.041

Google Scholar