Effect of Templates on the Electrochromic Properties of Tungsten Oxide Thin Films

Article Preview

Abstract:

The mesoporous tungsten oxide (WO3) films were derived from the peroxotungstic acid (PTA) sol with templates through sol-gel method. Polyethylene glycol (PEG) 400 and tri-block polymer P123 (HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H) were chosen as templates. The structural, morphological, optical and electrochromic properties of the WO3 thin films derived from different sols were studied. The composition and crystal phase of the films change at different annealing temperatures. The films derived from the sols containing templates have higher crystallization temperature than those without templates. And the morphologies are distinctly different from different sols. The addition of the templates can improve the electrochromic properties of the WO3 films, and those prepared from the 3% of P123 sol show the best electrochromic properties. The highest transmittance modulation is near 60%, and the largest ion inserted and deinserted diffusion coefficient can reach 5.706×10-12 cm2/s and 1.271×10-11 cm2/s, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

519-525

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.K. Deb, Optical and photoelectric properties and colour centres in thin films of tungsten oxide, Phil. Mag. 27 (1973) 801-822.

DOI: 10.1080/14786437308227562

Google Scholar

[2] S.K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Sol. Energy Mater. Sol. Cells. 92 (2008) 245-258.

DOI: 10.1016/j.solmat.2007.01.026

Google Scholar

[3] J.S.E.M. Svensson, C.G. Granqvist, Electrochromic coatings for smart windows: Crystalline and amorphous WO3 films, Thin Solid Films. 126 (1985) 31-36.

DOI: 10.1016/0040-6090(85)90171-3

Google Scholar

[4] C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays, Nature. 383 (1996) 608-610.

DOI: 10.1038/383608a0

Google Scholar

[5] Bin Ding, Moran Wang, Jianyong Yu, Gang Sun, Gas Sensors Based on Electrospun Nanofibers, Sensors. 9 (2009) 1609-1624.

DOI: 10.3390/s90301609

Google Scholar

[6] C.M. Lampert, Electrochromic materials and devices for energy efficient windows, Sol. Energy Mater. 11 (1984) 1-27.

Google Scholar

[7] T. Mertelj, D. Mihailovic, Photoinduced IR absorption in WO3: determination of the polaron binding energy, Eur. Phys. J. B. 23 (2001) 325-327.

DOI: 10.1007/s100510170051

Google Scholar

[8] A.Z. Sadek, Haidong Zheng, M. Breedon, V. Bansal, S.K. Bhargava, K. Latham, Jianmin Zhu, Leshu Yu, Zheng Hu, P.G. Spizzirri, W. Wlodarski, K. Kalantar-zadeh, Anodization of Ti thin film deposited on ITO, Langmuir. 25 (2009) 9545-9551.

DOI: 10.1021/la901944x

Google Scholar

[9] Nobuyoshi Koshida, Koichi Ohtaka, Masanobu Ando, Massanori Komuro, Nobufumi Atoda, Focused Ion Beam Lithography with Transition Mental Oxide Resists, Jpn. J. Appl. Phys. 28 (1989) 2090-(2094).

DOI: 10.1143/jjap.28.2090

Google Scholar

[10] S.K. Deb, A Novel Electrophotographic System, Appl. Opt. 8 (1969) 192-195.

Google Scholar

[11] R. Sato, N. Kawamura, H. Tokumaru, Relaxation Mechanism of Electrochromism of Tungsten-Oxide Film for Ultra-Multilayer Optical Recording Depending on Sputtering Conditions, Jpn. J. Appl. Phys. 46 (2007) 3958-3964.

DOI: 10.1143/jjap.46.3958

Google Scholar

[12] A. Subrahmanyam, A. Karuppasamy, Studies on electrochromic smart windows based on titanium doped WO3 thin films, Sol. Energy Mater. Sol. Cells. 91 (2007) 266-274.

DOI: 10.1016/j.tsf.2007.07.163

Google Scholar

[13] S.H. Mohamed, H.A. Mohamed, H.A. Abd El Ghani, Development of structural and optical properties of WOx films upon increasing oxygen partial pressure during reative sputtering, Physica B. 406 (2011) 831-835.

DOI: 10.1016/j.physb.2010.12.005

Google Scholar

[14] J.P. Ziegler, B.M. Howard, Applications of reversible electrodeposition electrochromic devices , Sol. Energy Mater. Sol. Cells. 39 (1995) 309-316.

Google Scholar

[15] A. Rougier, F. Portemer, A. Quédé, M. El. Marssi, Characterization of pulsed laser deposited WO3 thin films for electrochromic devices, Appl. Surf. Sci. 153 (1999) 1-9.

DOI: 10.1016/s0169-4332(99)00335-9

Google Scholar

[16] Jesús M. Ortega, Arturo I. Martínez, Dwight R. Acosta, Carlos R. Magaña, Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis, Sol. Energy Mater. Sol. Cells. 90 (2006) 2471-2479.

DOI: 10.1016/j.solmat.2006.03.033

Google Scholar

[17] K.J. Patel, C.J. Panchal, V.A. Kheraj, M.S. Desal, Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films Mat. Chem. Phys. 114 (2009) 475-478.

DOI: 10.1016/j.matchemphys.2008.09.071

Google Scholar

[18] B. Munro, S. Krämer, P. Zapp, H. Krug, Development of electrochromic cells by the sol–gel process, J. Sol-Gel Sci. Technol. 13 (1998) 673-678.

DOI: 10.1023/a:1008684720378

Google Scholar

[19] Simona Badilescu, P.V. Ashrit, Study of sol–gel prepared nanostructured WO3 thin films and composites for electrochromic applications, Solid State Ionics. 158 (2003) 187-197.

DOI: 10.1016/s0167-2738(02)00764-6

Google Scholar

[20] Renata Solarska, Bruce D. Alexander, Jan Augustynski, Electrochromic and photoelectrochemical characteristics of nanostructured WO3 films prepared by a sol–gel method, C. R. Chimie. 9 (2006) 301-306.

DOI: 10.1016/j.crci.2005.02.044

Google Scholar

[21] R. Solarska, Bruce D. Alexander, A. Braun, R. Jurczakowski, G. Fortunato, M. Stiefel, T. Graule, J. Augustynski, Tailoring the morphology of WO3 films with substitutional cation doping: Effect on the photoelectrochemical properties, Electrochim. Acta. 55 (2010).

DOI: 10.1016/j.electacta.2009.12.016

Google Scholar

[22] A. Cremonesi, Y. Djaoued, D. Bersani, P.P. Lottici, Micro-Raman spectroscopy on polyethylene-glycol assisted sol–gel meso and macroporous WO3 thin films for electrochromic applications, Thin Solid Films. 516 (2008) 4128-4132.

DOI: 10.1016/j.tsf.2007.10.075

Google Scholar

[23] W.H. Lai, J. Shieh, L.G. Teoh, I.M. Hung, C.S. Liao, M.H. Hon, Effect of copolymer and additive concentrations on the behaviors of mesoporous tungsten oxide, J. Alloys Compd. 396 (2005) 295–301.

DOI: 10.1016/j.jallcom.2005.01.004

Google Scholar

[24] M. Deepa, M. Kar, D.P. Singh, A.K. Srivastava, Shahzada Ahmad, Influence of polyethylene glycol template on microstructure and electrochromic properties of tungsten oxide, Sol. Energy Mater. Sol. Cells. 92 (2008) 170-178.

DOI: 10.1016/j.solmat.2007.01.024

Google Scholar

[25] Wei Wang, Yongxin Pang, S.N.B. Hodgson, XRD studies of thermally stable mesoporous tungsten oxide synthesised by a templated sol–gel process from tungstic acid precursor , Micropor Mesopor Mater. 121 (2009) 121–128.

DOI: 10.1016/j.micromeso.2009.01.014

Google Scholar

[26] S.S. Kalagi, D.S. Dalavi, R.C. Pawar, N.L. Tarwal, S.S. Mail, P.S. Patil, Polymer assisted deposition of electrochromic tungsten oxide thin films, J. Alloys Compd. 493 (2010) 335-339.

DOI: 10.1016/j.jallcom.2009.12.097

Google Scholar

[27] H. Kamala, A.A. Akl, K. Abdel-Hady, Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO3 films, Physica B. 349 (2004) 192-205.

DOI: 10.1016/j.physb.2004.03.088

Google Scholar

[28] Xilian Sun, Hongtao Cao, Zhimin Liu, Jianzhong Li, Influence of annealing temperature on microstructure and optical properties of sol–gel derived tungsten oxide films, Appl. Surf. Sci. 255 (2009) 8629-8633.

DOI: 10.1016/j.apsusc.2009.06.042

Google Scholar