An Effective Route to the Fabrication of Super-Hydrophobic Surfaces Combined by Micromolding and Photograft Polymerization Methods

Article Preview

Abstract:

A super-hydrophobic surface on the polypropylene matrix was fabricated via micromolding and photograft polymerization. A micro-convex body structure was molded by etching templates. The water contact angle could be increased to 138°. The fluoro methacrylate monomers were further grafted to the surface through UV-induced photograft polymerization. The morphology characterization and the spectroanalysis indicated that the rough hierarchical structure (confirmed by scanning electron microscope) and the grafted fluoropolymers (measured by fourier transform infrared spectrum and X-ray energy dispersive spectrometer) made a critical difference. A water contact angle of 160° was arrived.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-13

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Aussillous P., Quyry D., J. Nature , 411(2001) 924.

Google Scholar

[2] I. P. Parkin, R. G. Palgrave, J. Mater. Chem., 15(2005)1689.

Google Scholar

[3] L.J. Chen, M. Chen, H.D. Zhou, J.M. Chen, J. Appl. Surf. Sci., 255(2008)3459.

Google Scholar

[4] R. Blossey, J. Nature Mater., 2(2003) 301.

Google Scholar

[5] T. Sun, L. Feng, X. Gao, L. Jiang , J. Acc. Chem. Res., 38(2005)644.

Google Scholar

[6] Y. Lee, S.H. Park, K.B. Kim and J.K. Lee. J. Adv. Mater., 19(2007)30.

Google Scholar

[7] K.S. Lau Kenneth, Bico José, et al. J. Nano lett., 3(2003)701.

Google Scholar

[8] T. Kawase, H. Sawada, J. Adhesion Sci. Tech., 16(2002)1121.

Google Scholar

[9] M. L. Xue, R. David, C. C. Mercedes, J. Chem. Soc. Rev., 36( 2007)1350.

Google Scholar

[10] T. P. Russel, J. Science, 297(2002)964.

Google Scholar

[11] X. Yu, Z. Wang, Y. Jiang, F. Shi, X. Zhang, J. Adv. Mater., 17(2005)1289.

Google Scholar

[12] L. Xu, W. Chen, A. Mulchandani, Y. Yan, J. Ang. Chem. Int. Ed., 9(2005)6012.

Google Scholar

[13] A. Singh, L. Steely, H. R. Allcock, J. Langmuir, 11(2005)604.

Google Scholar

[14] H. Yabu, M. Shimomura. J. Chem. Mater., 52(2005)31.

Google Scholar

[15] X.Y. Lu, C.C. Zhang, Y.C. Han, J. Macromol. Rapid Commun., 1606(2004)10.

Google Scholar

[16] W. Lee, M.K. Jin, W.C. Yoo, J.K. Lee, J. Langmuir, 7665(2004)69.

Google Scholar

[17] J. Zhang, X. Lu, W. Huang, Y. Han, J. Macromol Rapid Commun., 477(2005)480.

Google Scholar

[18] R. Mohammadi, J. Wassink, A. Amirfazli, J. Langmuir, 9657(2004)62.

Google Scholar

[19] E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C.D.W. Wilkinson, M.O. Riehle, J. Nano Lett., 2097(2005)103.

DOI: 10.1021/nl051435t

Google Scholar

[20] L.Q. Zhu, Y. Jin, J. Appl. Surf. Sci., 253(2007)3432.

Google Scholar

[21] X. F. Gao and L. Jiang, J. Nature, 432(2004)36.

Google Scholar

[22] J. R. Xiao,H. Xu,C. S. Deng,H. Y. Wang,Y. F. Li, J. Acta Phys. Sin., 56(2007)2998.

Google Scholar

[23] J. Feng, B. Y. Huang,M. Q. Zhong, J. Jour. of Chem. Engi. of Chin. Unive., 1(2010)24.

Google Scholar