[1]
Pharm, D. T. and E. Oztemel. Control chart pattern recognition using neural networks. J. Syst. Eng., 2, 256-262(1992).
Google Scholar
[2]
Hwarng, H. B. and N. F. Hubele. Back-propagation pattern recognizers for X control charts. Methodology and performance. Computers ind. Engng., 24, 219-235(1993).
DOI: 10.1016/0360-8352(93)90010-u
Google Scholar
[3]
Smith, A. E. X-bar and R control chart interpretation using neural computing. Int. J. Prod. Res., 32, 309-320(1994).
Google Scholar
[4]
Pham, D. T. and E. Oztemel. Control chart pattern recognition using learning vector quantization networks. Int. J. Prod Res., 32, 721-729(1994).
DOI: 10.1080/00207549408956963
Google Scholar
[5]
Cheng C. S. A multi-layer neural network model for detecting changes in the process mean. Computers ind. Engng., 28, 51-61(1995).
DOI: 10.1016/0360-8352(94)00024-h
Google Scholar
[6]
Ruey-shiang Guh. Intergrating Artificial Intelligence into On-line statistical Process Control. Quality and reliability engineering international. 19, 1-20(2003).
Google Scholar
[7]
Pacella M., Semeraro Q. Using recurrent neural networks to detect changes in auto-correlated processes for quality monitoring. Computers & Industrial Engineering. 52, 502-520(2007).
DOI: 10.1016/j.cie.2007.03.003
Google Scholar
[8]
Niaki S. T. A., Abbasi B. Detection and classification mean-shifts in multi-attribute processes by artificial neural networks. International Journal of Production Research. 46, 2945-2963(2008).
DOI: 10.1080/00207540601039809
Google Scholar
[9]
Guh, R. S. Real-time recognition of control chart patterns in auto-correlated processes using a learning vector quantization network-based approach. International Journal of Production Research. 46, 3959-3991(2008).
DOI: 10.1080/00207540601011501
Google Scholar
[10]
Shaoxiong W. Study on On-line Detection and Analysis System of Control Chart Based on Wavelet Packet and Probabilistic Neural Network. Transactions of the Chinese society for agricultural machinery, vol. 39, 211-215, (2008).
Google Scholar
[11]
Cook D. R., Zobel, C. W. Nottingham, Q. J. Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters. International Journal of Production Research. 39, 3881-3887. (2001).
DOI: 10.1080/00207540110071750
Google Scholar
[12]
Ruey-shiang Guh. Simultaneous process mean and variance monitoring using artificial neural networks. Computers ind. Engng. 58, 739-753(2010).
DOI: 10.1016/j.cie.2010.02.004
Google Scholar