[1]
Yulan Yuan, Xibao Wang, Shunsheng Wu et al. Application and prospects of activating fluxes to welding[J]. Materials review, 2005, 19(8): 66-69.
Google Scholar
[2]
Lucas W. and Howse D., Activating flux increasing the performance and productivity of the TIG and plasma processes [J]. Weld Met. Fabr. , Jan. 1996: 11-17.
Google Scholar
[3]
Modenesi P. J., Apolinaario E. R. Study of A-TIG welding with a single-component flux [J]. Soldagem and Inspecao, 1999, 5(9): 9-16.
Google Scholar
[4]
Howse D. and Lucas W., Investigation into constriction by active fluxes for tungsten inert gas welding [J]. Science and Technology of Welding and Joining, 2000, 5(3): 189-193.
DOI: 10.1179/136217100101538191
Google Scholar
[5]
C. Dong and S. Katayama. Basic understanding of A-TIG welding process[C]. The 57th Annual Assembly of the International Institute of Welding. Osaka, 12 to 14 July, 2004: 371-382.
Google Scholar
[6]
S. Asai, R. Tsuboi, K. Kamimura, etal. Application of A-TIG Process to Repair Welding in Power Plants[C]. The 57th Annual Assembly of the International Institute of Welding. Osaka, 12 to 14 July, 2004: 442-453.
Google Scholar
[7]
Y. Ogawa. Effect of Active Flux on Anode Reaction[C]. The 57th Annual Assembly of the International institute of Welding. Osaka, 12 to 14 July, 2004: 383-390.
Google Scholar
[8]
Ruihua Zhang, Ding Fan, Shurong Yu. Study activating flux for mild steel [J]. Transactions of the China Welding Institution. 2003, 24(2): 16-18.
Google Scholar
[9]
Yong Huang, Ding Fan, Qinghua Fan. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy [J]. Chinese Journal of Mechanical Engineering. 2006, 42(5): 45-49.
DOI: 10.3901/jme.2006.05.045
Google Scholar
[10]
Chunli Yang, Ushio Masao, Tanaka Manabu. Effect of surface active flux on welding pool depth and arc phenomenon in TIG welding [J]. Chinese Journal of Mechanical Engineering. 2000 36(10): 59-63.
DOI: 10.3901/jme.2000.12.043
Google Scholar
[11]
Fengyao Liu, Chunli Yang, Sanbao Lin et al. Mechanism of increasing A-TIG welding penetration[J]. ACTA METALLURGICA SINICA. 2003 39(6): 661-665.
Google Scholar
[12]
Liming Liu, Zhaodong Zhang, Yong Shen et al. Effects of activating fluxes on TIG welding penetration of magnesium alloy [J]. ACTA METALLURGICA SINICA. 2006, 42(4): 399-404.
Google Scholar
[13]
Shanping Lu, Hidetoshi Fujii, Kiyoshi Nogi, Arc ignitability, bead protection and weld shape variations for He-Ar-O2 shielded GTA welding on SUS304 stainless steel[J], J. Mater. Process. Tech. (2008), doi: 10. 1016/j. jmatprotec. 2008. 03. 043.
DOI: 10.1016/j.jmatprotec.2008.03.043
Google Scholar
[14]
Saviskii, M.M., Leskov, G.I., Mechanizm vliyamia dzlektrootrida tepvnykh zpementov na propplavlauchyu sposovnosti luqi s voliframoym katodm Avtom[J]. Svarka. 1980(9): 17-22.
Google Scholar
[15]
Leconte, S., Paillard, P., Chapelle, P.,. Effects of flux containing fluorides on TIG welding process [J]. Sci. Tech. Weld Join. 2007(12): 120-126.
DOI: 10.1179/174329307x159810
Google Scholar
[16]
C.R. Heiple, J.R. Ropper, R. T Stagne. Surface active element effects on the shape of GTA, laser, and Electron Beam welds [J]. Welding Journal, 1983, (3): 72-77.
Google Scholar
[17]
Lu, S.P., Fujii, H., Sugiyama, H., Tanaka, M., Nogi, K., Mechanism and optimization of oxide fluxes for deep penetration in gas tungsten arc welding[J]. Metall. Mater. Trans. 2003(34A): 1901-(1907).
DOI: 10.1007/s11661-003-0155-4
Google Scholar
[18]
Leconte, S., Paillard, P., Chapelle, P., Effect of oxide fluxes on activating mechanisms of tungsten inert gas process [J]. Sci. Tech. Weld Join. 2006(11): 389-397.
DOI: 10.1179/174329306x129544
Google Scholar
[19]
Lowke, J.J., Tanake, M., Ushio, M., Insulation effects of flux layer in producing greater weld depth[C]. In: The 57th Annual Assembly of International Institute of Welding, Osaka, Japan, IIW Doc. 2004, 212-1053-04.
DOI: 10.1007/bf03266437
Google Scholar
[20]
Yong Huang, Ding Fan. Mechanism of weld penetration increased by SiO2 in AC A-TIG welding for aluminum alloy. [J]. Transactions of the China Welding Institution. 2008, 29(1): 45-50.
DOI: 10.1007/s11465-007-0076-9
Google Scholar
[21]
M. Tanaka, M. Ushio. Approach to understand of TIG welding with activating flux [J]. Transactions of JWRI, 2000, 29(2): 41-49.
Google Scholar
[22]
M. Tanaka, T. Shimiza, H. Terasaki, M. Ushio, F. Koshi-ishi, and C. –L. Yang, Effects of activating flux on arc phenomena in gas tungsten arc welding [J], Science and Technology of Welding and Joining, 2000, 5 (6): 397-402.
DOI: 10.1179/136217100101538461
Google Scholar
[23]
S. Leconte, P. Paillard, and J. Saindrenan, Effect of fluxes containing oxides on tungsten inert gas welding process [J], Science and Technology of Welding and Joining, 2006, 11 (1): 43-47.
DOI: 10.1179/174329306x77047
Google Scholar
[24]
S.A. David, T. Debroy, J.M. Vitek. Phenomenological modeling of fusion welding processes [J]. MRS Bulletin, 1994, 14(1): 29-35.
DOI: 10.1557/s0883769400038835
Google Scholar
[25]
Ruihua Zhang, Yan Yin, Ding Fan et al. Numerical simulation of the mechanism for penetration increasing of A-TIG welding[J]. Chinese Journal of Mechanical Engineering. 2008 44(5): 175-180.
DOI: 10.3901/jme.2008.05.175
Google Scholar