Improvement in the Transport of Charge Carriers in Tunnel Junctions of Silicon-Based Thin Film Tandem Solar Cells

Article Preview

Abstract:

We report new results on a tunneling junction for tandem solar cells using a nano-structured amorphous silicon p+ layer (na-Si p+) as the recombination layer inserted between the n layer and the p layer. Devices were characterized by their dark current-voltage behavior (I-V), activation energy (Ea) and quantum efficiency (QE). The result shows that the tunnel junction with a na-Si p+ insertion layer has higher recombination rates with higher density of defect states of about 2.7×1019cm-3 , lower resistance with activation energy of 22meV. The tunnel junction with a na-Si p+ insertion layer could be easily integrated into the tandem solar cell deposition process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-140

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Vukadinovic, M; Smole, F; Topic, M, et al. SOLAR ENERGY MATERIALS AND SOLAR CELLS 66 (2001)361-367.

Google Scholar

[2] Joonghwan Kwak; Seong Won Kwon; Koeng Su Lim. Journal of Non-Crystalline Solids 352(2006) 1847.

Google Scholar

[3] Steven S. Hegedus Frank Kampas and Jianping Xi. Appl. Phys. Lett. 67 (1995) 813.

Google Scholar

[4] Y. Sakai, K. Fukuyama, M. Matsumura, Y. Nakato, and H. Tsubomura. J. Appl. Phys. 64 (1988)394.

Google Scholar

[5] D. Shen, R. Schropp, H. Chatham, R. Hollingsworth, P. Bhat, and J. Xi. Appl. Phys. Lett. 56(1990) 1871.

Google Scholar

[6] J. Hou, J. Xi, F. Kampas, S. Bae, and S. Fonash. Non-local recombination in "tunnel junctions" of multijunction amorphous Si alloy solar cells. Mater. In: J. Hou, J. Xi, F. Kampas, S. Bae, and S. Fonash, Res. Soc. Symp. Proc. Vol 336, Boston, Massachusetts, 1994, PP 717-722.

DOI: 10.1557/proc-336-717

Google Scholar

[7] Sukti Hazra and Swati Ray. Jpn.J.Appl.Phys.Vol.38 (1999) pp.L495-L497.

Google Scholar

[8] Huiying Hao,Xianbo Liao, Xiangbo Zeng, Hongwei Diao, Ying Xu, and Guanglin Kong Journal of Non-crystalline solids 352 (2006) 1904–1908.

DOI: 10.1109/icsict.2004.1435239

Google Scholar

[9] Min C, Zhang WJ, Wang TM, et al. VACUUM 81 (2006)126.

Google Scholar

[10] Koyel Bhattacharya and Debajyoti Das. Nanotechnology 18 (2007) 415704.

Google Scholar

[11] He Y, Hu G, Yu M, et al. Phys Rev B 59 (1999) 15352.

Google Scholar

[12] Vanecek, M; Kocka, J; Stuchlik, J, et al. Solar Energy Materials 8 (1983)411.

Google Scholar

[13] Wyrsch, N; Finger, F; Mcmahon, TJ, et al. Journal of Non-crystalline Solids 137(1991) 347.

Google Scholar

[14] Baojie Yan, C.-S. Jiang, C.W. Teplin, et al. Journal of Applied Physics 101, 033712(2007).

Google Scholar