The Effects of Solid-Solution on Properties and Microstructure of Cu-Zn-Al-Ni Alloy

Article Preview

Abstract:

The effects of different solid-solution temperature (500, 600, 700, 800, 900°C) and holding time (0.5, 1, 1.5, 2h) on properties and microstructure of Cu-Zn-Al-Ni alloy were investigated experimentally. The result shows that the hardness of the alloy presents lowest at 700°C and then increases gradually as a function of temperature. It is also revealed that hardness has no relation with the holding time. Phase transition occurs when the temperature is 900°C, as a result of which increases the hardness of the alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

361-365

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.J. Bai, G.L. Geng, X.F. Bian, et al, Influence of initial heating temperature on the reverse martensitic transformation of Cu-Zn-Al-Ni alloy, Mater. Sci. Eng. A. 284 (2000) 25-28.

DOI: 10.1016/s0921-5093(00)01394-0

Google Scholar

[2] Y.N. Wen, L.R. Lai, X.M. Zhang, et al, Research status of copper base elastic alloy, Mat. Rev. 23 (2009) 503-506.

Google Scholar

[3] S.P. Gong, Development and application of copper base elastic alloy, Nonferr. Metals Process. 34 (2005) 33-35.

Google Scholar

[4] J.C. Sun, X.W. Liu, A.R. Zhou, Current study status and development tendency of elastic alloys, Mater. Heat Treat. 35 (2006) 52-56.

Google Scholar

[5] Aksoya M, et a1, A note on the effect of phosphorus on the microstructure and mechanical properties of leaded—tin bronze, J. Mater. Process. Techn. 124 (2002) 113-116.

Google Scholar

[6] T. Cemoch,M. Kandab,V. Novka,et a1.Acoustic charactefizatinof the elastic properties of austenite phase and martensitic transformations in CuAlNi shape memory alloy, J. Alloys Compd. 378 (2004) 140-144.

DOI: 10.1016/j.jallcom.2003.10.093

Google Scholar

[7] Y.N. Wen, L.R. Lai, X.M. Zhang, et al, Microstructures and properties of Cu-Zn-Al-Ni alloy, J. Cent. South Univ. T. 42 (2011) 922-927.

Google Scholar

[8] E. Zelaya, A. Tolley, A.M. Cond´o, P.F.P. Fichtner. Ion irradiation induced precipitation of β phase in Cu-Zn-Al-Ni, Mater. Sci. Eng. A. 444 (2007) 178-183.

DOI: 10.1016/j.msea.2006.08.069

Google Scholar

[9] G.D. Serrano, J.L. Pelegrina, A.M. Cond´o, M. Ahlers, Helical dislocations as vacancy sinks in β phase Cu-Zn-Al-Ni alloys, Mater. Sci. Eng. A. 433 (2006) 149-154.

DOI: 10.1016/j.msea.2006.06.040

Google Scholar

[10] X.Z. Zhou, Y.C. Su, A novel Cu-Ni-Zn-Al alloy with high strength through precipitation hardening, Mater. Sci. Eng. A. 527 (2010) 5153-5156.

DOI: 10.1016/j.msea.2010.04.089

Google Scholar

[11] E. Zelaya, A. Tolley, Electron irradiation induced stabilization in Cu-Zn-Al-Ni alloys, Scripta Mater. 49 (2003) 373-377.

DOI: 10.1016/s1359-6462(03)00326-9

Google Scholar