CuO Microspheres Synthesized via the Easy Hydrothermal Method

Article Preview

Abstract:

CuO microspheres are successfully synthesized with CuCl2 as copper source and Na2CO3 as auxiliary salt at 240 °C for 24 h via the easy hydrothermal method. The phase and the morphologies of the samples have been characterized and analyzed by XRD (X-ray diffraction) and SEM (Scanning electron microscope), respectively. XRD analysis shows that the phase of as obtained samples is CuO. SEM analysis confirms that the increase of the reaction time, the reaction temperature and the auxiliary salt is propitious to synthesize CuO microspheres.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-87

Citation:

Online since:

March 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Taracon: Nature, Vol. 407 (2000), p.496.

Google Scholar

[2] R.V. Kumar, Y. Diamant and A. Gedanken: Chem. Mater., Vol. 12 (2000), p.2301.

Google Scholar

[3] H. Cao and S. L. Suib: J. Am. Chem. Soc., Vol. 116 (1994), p.5334.

Google Scholar

[4] B. Ao, L. Kummerl and D. Haarer: Adv. Mater., Vol. 7 (1995), p.495.

Google Scholar

[5] M. Singhal, P. Chhabra, P. Kang and D. O. Shah: Mater. Res. Bull., Vol. 32 (1997), p.233.

Google Scholar

[6] Y. Jiang, S. Decker, C. Mohs and K. J. Klabunde: J. Catal., Vol. 180 (1998), p.24.

Google Scholar

[7] T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi and T. Takita: J. Mater. Chem., Vol. 8 (1998), p.2037.

Google Scholar

[8] W. Zhang, S. Ding, Z. Yang, A. Liu, Y. Qian, S. Tang and S. Yang: J. Cryst. Growth, Vol. 291 (2006), p.479.

Google Scholar

[9] C. L. Zhu, C. N. Chen, L. Y. Hao, Y. Hu and Z. Y. Chen: J. Cryst. Growth, Vol. 263 (2004), p.473.

Google Scholar

[10] W. Jisen, Y. Jinkai, S. Jinquan and B. Ying: Mater. Des., Vol. 25 (2004), p.625.

Google Scholar

[11] M. Kaur, K. P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K. Gupta and J. V. Yakhmi: J. Cryst. Growth, Vol. 289 (2006), p.670.

DOI: 10.1016/j.jcrysgro.2005.11.111

Google Scholar

[12] X. Song, H. Yu and S. Sun: J. Colloid Interf. Sci., Vol. 289 (2006), p.588.

Google Scholar

[13] R. V. Kumar, Y. Diamant and A. Gedanken: Chem. Mater., Vol. 12 (2000), p.2301.

Google Scholar

[14] A. A. Eliseev, A. V. Lukashin, A. A. Vertegel, L. I. Heifets, A. I. Zhirov and Y. D. Tretyakov: Mater. Res. Innovations, Vol. 3 (2000), p.308.

Google Scholar

[15] J. F. Xu, W. Ji, Z. X. Shen, S. H. Tang, X. R. Ye, D. Z. Jia and X. Q. Xin: J. Solid State Chem., Vol. 147 (2000), p.516.

Google Scholar

[16] K. Borgohain, J. B. Singh, M. V. Rama Rao, T. Shripathi and S. Mahamuni: Phys. Rev., Vol. 61 (2000), p.11093.

DOI: 10.1103/physrevb.61.11093

Google Scholar

[17] J. Q. Yu, Z. Xu and D. Z. Jia: Chin. J. Functional Mater. Instrum., Vol. 5 (1999), p.267.

Google Scholar

[18] S. Nakao, M. Ikeyama, T. Mizota, P. Jin, M. Tazawa, Y. Miyagawa, S. Miyagawa, S. Wang and L. Wang: Rep. Res. Cent. Ion Beam Technol., Hosei Univ., Vol.18 (Suppl.) (2000), p.153.

Google Scholar