Bi-Functional Magnetical Chiral Ionic Liquids Derived from Imidazolium and Pyridinium

Article Preview

Abstract:

Novel Bi-Functional Magnetical Chiral Ionic Liquids (MCILs) Derived from Imidazolium and Pyridinium Were Synthesized via Simply Two Step Reactions. Optically Active Ionic Liquids Have an Asymmetric Carbon Atom Linked to the Positively Charged Imidazole Ring or Pyridine Ring, while the Magnetical Anion Contains Tetrachloroferrate (FeCl4-), their Properties of Chirality and Magnetism Were Characterized. the Structure of MCILs Would Promise a New Class of Bi-Functional Ionic Liquids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-133

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. welton, Room-Temperature Ionic Liquids, Solvents for Synthesis and Catalysis, Chem. Rev. 99 (1999) 2071-2083.

DOI: 10.1021/cr980032t

Google Scholar

[2] A. Mele, C.D. Tran, S.H.P. Lacerda, The Structure of a Room-Temperature Ionic Liquid with and without Trace Amounts of Water: The Role of C-H···O and C-H···F Interactions in 1-n-Butyl-3-Methylimidazolium Tetrafluoroborate, Angew Chem. Int.Ed. 42 (2003) 4364-4366.

DOI: 10.1002/anie.200351783

Google Scholar

[3] C.D. Tran, S.H.P. Lacerda, Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids by Near-Infrared Spectrometry, Anal.Chem. 74 (2002) 5337-5341.

DOI: 10.1021/ac020320w

Google Scholar

[4] J. Ding, T. Welton, D.W. Armstrong, Chiral Ionic Liquids as Stationary Phases in Gas Chromatography, Anal Chem. 76 (2004) 6819-6822.

DOI: 10.1021/ac049144c

Google Scholar

[5] T. Trucng, G. vo-Thanh, Synthesis of functionalized chiral ammonium, imidazolium, and pyridinium-based ionic liquids derived from (-)-ephedrine using solvent-free microwave activation, Applications for the asymmetric Michael addition, Tetrahedron. 66 (2010) 5277-5282.

DOI: 10.1016/j.tet.2010.03.101

Google Scholar

[6] S.Z. Luo, L. Zhang, X.L. Mi, Y.P. Qiao, J.P. Cheng, Functionalized Chiral Ionic Liquid Catalyzed Enantioselective Desymmetrizations of Prochiral Ketones via Asymmetric Michael Addition Reaction, J.Org.Chem. 72 (2007) 9350-9350.

DOI: 10.1021/jo7020357

Google Scholar

[7] D.E. Siyutkin, A.S. Kucherenko, S.G. Zlotin, A new (S)-prolinamide modified by an ionic liquid moiety-a high performance recoverable catalyst for asymmetric aldol reactions in aqueous media, Tetrahedron. 66 (2010) 513-518.

DOI: 10.1016/j.tet.2009.11.033

Google Scholar

[8] J.J. Jodry, K. Mikami, New chiral imidazolium ionic liquids: 3D-network of hydrogen bonding, Tetrahedron Letters. 45 (2004) 4429-4431.

DOI: 10.1016/j.tetlet.2004.04.063

Google Scholar

[9] O. N. V. Buu, A. Aupoix, G. Vo-Thanh, Synthesis of novel chiral imidazoliu-based ionic liquids derived from isosorbide and their applications in asymmetric aza Diels-Alder reaction, Tetrahedron. 65 (2009) 2260-2265.

DOI: 10.1016/j.tet.2009.01.055

Google Scholar

[10] R.A. Osteryoung, H.L. Chum, V.R. Koch, L.L. Miller, Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt, J Am Chem Soc. 97(1975) 3264-3265.

DOI: 10.1021/ja00844a081

Google Scholar

[11] M. Okuno, H. Hamaguchi, Magnetic manipulation of materials in a magnetic ionic liquid, Appl. Phys. Letter. 89 (2006) 132506:1-132506:2.

Google Scholar

[12] X.W. Pei, Y.H. Yan, L.Y. Yan, P. Yang, J.L. Wang, R. Xu, C.P. MaryB, A magnetically responsive material of single-walled carbon nanotubes functionalized with magnetic ionic liquid, Carbon. 48 (2010) 2501-2505.

DOI: 10.1016/j.carbon.2010.03.023

Google Scholar

[13] H. Wang, R.Y. Yan, Z.X. Li, X.P. Zhang, S.J. Zhang, Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly( ethylene terephthalate ), Catalysis Communications. 11 (2010) 763-767.

DOI: 10.1016/j.catcom.2010.02.011

Google Scholar

[14] C.Y. Li, J.F. Zhao, R. Tan, Z.G. Peng, R.C. Luo, M. Peng, D.H. Yin, Recyclable ionic liquid-bridged chiral dimeric salen Mn(III) complexes for oxidative kinetic resolution of secondary alcohols, Catalysis Communications. 15 (2011) 27-31.

DOI: 10.1016/j.catcom.2011.08.009

Google Scholar

[15] Y.Y. Song, Q.R. Jin, Su.L. Zhang, H.W. Jing, Q.Q. Zhu, Chiral metal-containing ionic liquid: Synthesis and applications in the enantioselective cycloaddition of carbon dioxide to epoxides, Sci China Chem. 54 (2011) 1044-1050.

DOI: 10.1007/s11426-011-4274-2

Google Scholar

[16] M. Li, S.L. De Rooy, D.K. Bwambok, B. El-Zahab, J.F. DiTuse, I.M. Warner, Magnetic chiral ionic liquids derived from amino acids, Chem. Commun. (2009) 6922-6924.

DOI: 10.1039/b917683g

Google Scholar

[17] B. Ni, A. D. Headley, Novel imidazolium chiral ionic liquids that contain a urea functionality, Tetrahedron Letters. 47 (2006) 7331-7334.

DOI: 10.1016/j.tetlet.2006.08.015

Google Scholar

[18] B. Ni, Q.Y. Zhang, A.D. Headley, Design and Synthesis of pyridinium Chiral Ionic Liquids Tethered to a Urea Functionality, J.Org.Chem. 71 (2006) 9857-9860.

DOI: 10.1021/jo0613232

Google Scholar

[19] F. Tang, Q.L. Zhang, D.D. Ren, Z. Nie, Q. Liu, S.Z. Yao, Functional amino acid ionic liquids as solvent and selector in chiral extraction, Journal of Chromatography A. 1217 (2010) 4669-4674.

DOI: 10.1016/j.chroma.2010.05.013

Google Scholar

[20] J.Y. Kim, J.T. Kim, E.A. Song, Y.K. Min, H. Hamaguchi, Polypyrrole Nanostructure Self-Assembled in Magnetic Ionic Liquid as a Template, Macromolecules. 41 (2008) 2886-2889.

DOI: 10.1021/ma071333k

Google Scholar

[21] C.D. Tran, S.H.P. Lacerda, D Oliveira, Absorption of Water by Room-Temperature Ionic Liquids: Effect of Anions on Concentration and State of Water, Applied Spectroscopy. 57 (2003) 152-157.

DOI: 10.1366/000370203321535051

Google Scholar

[22] D.E. Siyutkin, A.S. Kucherenko, M.I. Struchkova, S. G. Zlotin, A novel (S)-proline-modified task-specific chiral ionic liquid-an amphiphilic recoverable catalyst for direct asymmetric aldol reactions in water, Tetrahedron Letters. 49 (2008) 1212-1216

DOI: 10.1016/j.tetlet.2007.12.044

Google Scholar

[23] B. Ni, Q.Y. Zhang, A.D. Headley, Pyrrolidine-based chiral pyridinium ionic liquid (ILs) as recyclable and highly efficient organocatalysts for the asymmetric Michael addition reaction, Tetrahedron Letters. 49 (2008) 1249-1252.

DOI: 10.1016/j.tetlet.2007.12.024

Google Scholar

[24] S.F. Yu, S. Lindeman, C.D. Tran, Chiral Ionic liquids: Synthesis, Properties, and Enantiomeric Recognition, J.Org.Chem. 73 (2008) 2576-2591.

DOI: 10.1021/jo702368t

Google Scholar

[25] M.S. Sitze, E.R. Schreiter, E.V. Patterson, R. G. Freeman, Ionic Liquids Based on FeCl3 and FeCl2. Raman Scattering and ab Initio Calculations, Inorg. Chem. 40 (2001) 2298-2304.

DOI: 10.1021/ic001042r

Google Scholar

[26] M. Poterala, J. Plenkiewicz, Synthesis of new chiral ionic liquids from α-hydroxycarboxylic acids, Tetrahedron:Asymmetry. 22 (2011) 294-299.

DOI: 10.1016/j.tetasy.2011.01.024

Google Scholar

[27] S. Hayashi, S. Saha, H. Hamaguchi, A new class of magnetic fluids: bmim[FeCl4] and nbmim[FeCl4] ionic liquids, IEEE Trans Magn. 42 (2006) 12-14.

DOI: 10.1109/tmag.2005.854875

Google Scholar

[28] D. Wyrzykowski, A. Pattek-Janczyk, T. Maniecki, K.Zaremba, Z. Warnke, Thermal analysis of quinolinium tetrachloroferrate(III), Thermochimica Acta. 443 (2006) 72-77.

DOI: 10.1016/j.tca.2005.12.023

Google Scholar

[29] T. Backer, O. Breunig, M. Valldor, K. Merz, V. Vasylyeva, A.V. Mudring, In-Situ Crystal Growth and Properties of the Magnetic Ionic Liquid [C2MIM][FeCl4], Cryst.Growth Des. 11 (2011) 2564-257

DOI: 10.1021/cg200326n

Google Scholar