[1]
R. Blossey, Self-cleaning surfaces-virtual realities, Nat. Mater. 2 (2003) 301-306.
DOI: 10.1038/nmat856
Google Scholar
[2]
D. Y. Khang, H. Jiang, Y. Huang and J. A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science 311 (2006) 208-212.
DOI: 10.1126/science.1121401
Google Scholar
[3]
E. Ostuni, C. S. Chen, D. E. Ingber and G. M. Whitesides, Selective deposition of proteins and cells in arrays of microwells, Langmuir 17 (2001) 2828-2834.
DOI: 10.1021/la001372o
Google Scholar
[4]
P. Yang, G. Wirnsberger, H. C. Huang, S. R. Cordero, M. D. McGehee, B. Scott, T. Deng, G. M. Whitesides, B. F. Chmelka, S. K. Buratto and G. D. Stucky, Mirrorless lasing from mesostructured waveguides patterned by soft lithography, Science 287 (2000).
DOI: 10.1126/science.287.5452.465
Google Scholar
[5]
Y. Xia and G. M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 1998, 28, 153-184.
DOI: 10.1146/annurev.matsci.28.1.153
Google Scholar
[6]
S. H. Kim, M. J. Misner, T. Xu, M. Kimura and T. P. Russell, Highly oriented and ordered arrays from block copolymers via solvent evaporation, Adv. Mater. 16 (2004) 226.
DOI: 10.1002/adma.200304906
Google Scholar
[7]
J. L. Guo, Nanoimprint lithography: Methods and material requirements, Adv. Mater. 19 (2007) 495-513.
DOI: 10.1002/adma.200600882
Google Scholar
[8]
N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson and G. M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393 (1998) 146-149.
DOI: 10.1038/30193
Google Scholar
[9]
Y. Zhao, W. M. Huang and Y. Q. Fu, Formation of micro/nano-scale wrinkling patterns atop shape memory polymers, J. Micromech. Microeng. 21 (2011) 067007.
DOI: 10.1088/0960-1317/21/6/067007
Google Scholar
[10]
C. J. Kloxin, T. F. Scott, H. Y. Park and C. N. Bowman, Mechanophotopatterning on a photoresponsive elastomer, Adv. Mater. 23 (2011) 1977-(1981).
DOI: 10.1002/adma.201100323
Google Scholar
[11]
K. H. Jeong, J. Kim and L. P. Lee, Biologically inspired artificial compound eyes, Science 312 (2006) 557-561.
DOI: 10.1126/science.1123053
Google Scholar
[12]
L. Li and A. Y. Yi, Development of a 3D artificial compound eye, Opt. Express 18 (2010) 18125-18137.
DOI: 10.1364/oe.18.018125
Google Scholar
[13]
D. Radtke, J. Duparré, U. D. Zeitner and A. Tünermann, Laser lithographic fabrication and characterization of a spherical artificial compound eye, Opt. Express 15 (2007) 3067-3077.
DOI: 10.1364/oe.15.003067
Google Scholar
[14]
X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang and L. Jiang, The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography, Adv. Mater. 19 (2007) 2213-2217.
DOI: 10.1002/adma.200601946
Google Scholar
[15]
L. Sun, Y. Zhao, W. M. Huang and T. H. Tong, Formation of combined surface features of protrusion array and wrinkles atop shape-memory polymer, Surf. Rev. Lett. 16 (2009) 929-933.
DOI: 10.1142/s0218625x09013505
Google Scholar
[16]
Y. Zhao, C. C. Wang, W. M. Huang, H. Purnawali and L. An, Formation of micro protrusive lens arrays atop poly(methyl methacrylate), Opt. Express 19 (2011) 26000-26005.
DOI: 10.1364/oe.19.026000
Google Scholar