[1]
C. Pinto, E. Macho, V. Petuya, O. Altuzarra, A. Hernández, Logiciel de simulation pour la caracterisation cinématique de robots spatiaux. Proceedings de Colloque national d'AIP-PRIMECA, (2011) 29 March-1st April, Mont-Dore.
Google Scholar
[2]
Z. Bi, S. Lang, D. Zhang, P. Orban, and M. Verner, Integrated design toolbox for tripod-based parallel kinematic machines. Journal of Mechanical Design, 129 (2007), Pages: 799-807.
DOI: 10.1115/1.2735340
Google Scholar
[3]
D. Zhang, L. Wang and S. Lang, Parallel Kinematic Machines: Design, Analysis and Simulation in an Integrated Virtual Environment, Transactions of the ASME, Journal of Mechanical Design, 127 (2005), Issue 7, Pages: 580-588.
DOI: 10.1115/1.1897745
Google Scholar
[4]
G. Bianchi, I. Fassi, and L. M. Tosatti, A Virtual Prototyping Environment for Parallel Kinematic Machine Analysis and Design, 15th European ADAMS Users' Conference, (2000).
Google Scholar
[5]
Y. Lu, Using CAD variation geometry for solving velocity and acceleration of parallel manipulators with 3-, 4-, 5-linearly driven limbs. ASME Journal of Mechanical Design, 128(4) (2006) 738-746.
DOI: 10.1115/1.2202147
Google Scholar
[6]
Y. Lu, Using CAD functionalities for the kinematic analysis of spatial parallel manipulators with 3-, 4-, 5-, 6-linearly driven limbs. Journal of Mechanism and Machine Theory, 39(1) (2004) 41-60.
DOI: 10.1016/s0094-114x(03)00103-4
Google Scholar
[7]
M.A. Laribi, L. Romdhane, S. Zeghloul, Advanced Synthesis of the DELTA Parallel Robot for a Specified Workspace. In: Parallel Manipulators, Towards New Applications, (2008), Advanced Robotic Systems, Austria, Vienne, (ISBN 978-3-902613-40-0).
DOI: 10.5772/5432
Google Scholar
[8]
Y. Li and Q. Xu, Design and application of a new 3-DOF translational parallel manipulator, In Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO'07), December 9-11, (2007) 85-90. Hsinchu, Taiwan.
DOI: 10.1109/arso.2007.4531432
Google Scholar
[9]
I. A. Bonev, and J. Ryu, A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators, Journal of Mechanism and machine theory, Vol. 36 (2001), Pages: 1-13.
DOI: 10.1016/s0094-114x(00)00031-8
Google Scholar
[10]
J. Blaise, I. A. Bonev, B. Monsarrat, S. Briot, J. M. Lambert, C. Perron, Kinematic characterization of hexapods for industry, Journal of Industrial Robot, Vol. 37-1 (2010) Pages: 79-88.
DOI: 10.1108/01439911011009984
Google Scholar
[11]
M. L. Husty, On the workspace of planar three-legged platforms. In Proceedings ISRAM - World Congress of Automation, Pages: 1790-1796, Montpellier, France, (1996).
Google Scholar
[12]
C. Innocenti, V. Parenti-Castelli, Singularity-Free evolution from one configuration to another in serial and fully-parallel manipulators, Robotics, Spatial Mechanisms and Mechanical Systems, ASME, Vol. 45, (1992), 553-560.
DOI: 10.1115/detc1992-0258
Google Scholar
[13]
K. A. Arrouk, B.C. Bouzgarrou, G. Gogu, Workspace Determination and Representation of Planar Parallel Manipulators in a CAD Environment, 3rd European Conference on Mechanism Science (EUCOMES 2010), September 14-18, (2010), Cluj-Napoca, Romania.
DOI: 10.1007/978-90-481-9689-0_69
Google Scholar
[14]
Information on. http: /robot. gmc. ulaval. ca/fr/recherche/theme102. html.
Google Scholar
[15]
Hu. Xiaolin, Design and Analysis of a Three Degrees of Freedom Parallel Kinematic Machine, Thesis Submitted for the Degree of Master of Applied Science, University of Ontario Institute of Technology August, (2008).
Google Scholar
[16]
D. Zlatanov, R. G. Fenton, B. Behhabid, Singularity Analysis of Mechanisms and Robots via a Velocity-Equation Model of the Instantaneous Kinematics, Proceedings of the IEEE International conference on Robotics and Automation (1994).
DOI: 10.1109/robot.1994.351325
Google Scholar
[17]
D. Zlatanov, B. Benhabib, R.G. Fenton, Velocity and singularity analysis of Hybrid Chain Manipulators. Proceedings of the 23rd Biennial Mechanism Conference, 72 (1994), 467- 476.
Google Scholar
[18]
C. Gosselin, J. Angeles, Singularity Analysis of Closed-Loop Kinematic Chains, IEEE Transactions on Robotics and Automation, 6 (1990), No. 3, 281–290.
DOI: 10.1109/70.56660
Google Scholar
[19]
K. J. Waldron, S.L. Wang, S.L. Bolin, A study of the Jacobian matrix of serial manipulators, ASME Journal of Mech. Transm. Automn Des. 107 (1985), 230–238.
DOI: 10.1115/1.3258715
Google Scholar
[20]
J. W. Burdick, A classification of 3R regional manipulator singularities and geometries, Mechanisms and Machine Theory, 30(1) (2001), 71-89.
DOI: 10.1016/0094-114x(94)00043-k
Google Scholar
[21]
J. P. Merlet, Singular Configurations of Parallel Manipulators and Grassmann Geometry, The International Journal of Robotics Research, 8(5) (1989) 45–56.
DOI: 10.1177/027836498900800504
Google Scholar
[22]
J. P. Merlet, Parallel Manipulators Part 2: Singular Configurations and Grassmann Geometry, Technical Report, (1988). INRIA, Sophia Antipolis, France.
Google Scholar
[23]
Ph. Wenger, D. Chablat, Uniqueness Domains in the Workspace of Parallel Manipulators, IFAC-SYROCO, (1997) 431-436, Nantes.
DOI: 10.1016/s1474-6670(17)44297-2
Google Scholar
[24]
J. Sefrioui, C.M. Gosselin, On the quadratic nature of the singularity curves of planar three-degree-of-freedom parallel manipulators, Mechanism and Machine Theory, 30 (1994), No. 4, 533-551.
DOI: 10.1016/0094-114x(94)00052-m
Google Scholar
[25]
D. Chablat, Domaines d'unicité et Parcourabilité pour les Manipulateurs Pleinement Parallèles, Ph.D. Thesis, École Centrale de Nantes, Nantes, France, (1998).
Google Scholar
[26]
M. Zein, Analyse cinématique des manipulateurs sériels 3r orthogonaux et des manipulateurs parallèles plans, Ph.D. Thesis, l'École Centrale de Nantes et l'Université de Nantes, Juillet (2007).
Google Scholar
[27]
E. Macho, O. Altuzarra, C. Pinto, A. Hernandez, Singularity free change of assembly mode in parallel manipulators Application to the 3-RPR planar platform, in Proceedings of the 12th World Congress, Besancon, France, (2007).
Google Scholar