[1]
J. -P. Merlet, Singular Configurations of Parallel Manipulators and Grassmann Geometry, J. Robot. Res. 8: 5 (1992) 45-56.
Google Scholar
[2]
E. Borel, Mémoire sur les déplacements à trajectoires sphériques, Mém. présenteés par divers savants, Paris 2: 33 (1906) 1-128.
Google Scholar
[3]
R. Bricard, Mémoire sur les déplacements à trajectoires sphériques, J. École Polyt. 2: 11 (1906) 1-96.
Google Scholar
[4]
M. Husty, E. Borel's and R. Bricard's Papers on Displacements with Spherical Paths and their Relevance to Self-Motions of Parallel Manipulators, in: M. Ceccarelli (Ed. ), International Symposium on History of Machines and Mechanisms, Kluwer, 2000, pp.163-172.
DOI: 10.1007/978-94-015-9554-4_19
Google Scholar
[5]
H. Vogler, Bemerkungen zu einem Satz von W. Blaschke und zur Methode von Borel-Bricard, Grazer Math. Ber. 352 (2008) 1-16.
Google Scholar
[6]
M. Chasles, Sur les six droites qui peuvent étre les directions de six forces en équilibre, Comptes Rendus des Séances de l'Académie des Sciences 52 (1861) 1094-1104.
DOI: 10.3406/crai.1861.66524
Google Scholar
[7]
R. Bricard, Mouvement d'un solide dont tous les points décrivent des lignes sphériques, Comptes Rendus des Séances de l'Académie des Sciences 123 (1896) 39.
DOI: 10.3406/crai.1896.70736
Google Scholar
[8]
R. Bricard, Mémoire sur la théorie de l'octaèdre articulé, J. de Mathématiques pures et appliquées 3 (1897) 113-148.
Google Scholar
[9]
E. Duporcq, Sur la correspondance quadratique et rationnelle de deux figures planes et sur un déplacement remarquable, Comptes Rendus des Séances de l'Académie des Sciences 126 (1898) 1405-1406.
DOI: 10.5962/bhl.part.2250
Google Scholar
[10]
A. Karger, Parallel manipulators and Borel-Bricard's problem, Comput. Aided Geom. Des. 27: 8 (2010) 669-680.
DOI: 10.1016/j.cagd.2010.07.002
Google Scholar
[11]
E. Duporcq, Sur le déplacement le plus général d'une droite dont tous les points décrivent des trajectoires sphériques, J. de Mathématiques pures et appliquées 5 (1898) 121-136.
Google Scholar
[12]
A. Mannheim, Principes et Développements de Géometrié cinématique, Gauthier-Villars, Paris, 1894.
Google Scholar
[13]
G. Kœnigs, Leçons de Cinématique, Librairie Scientifique A. Hermann, Paris, 1897.
Google Scholar
[14]
J. Krames, Zur Bricardschen Bewegung, deren sämtliche Bahnkurven auf Kugeln liegen (Über symmetrische Schrotungen II), Mh. Math. Phys. 45 (1937) 407-417.
DOI: 10.1007/bf01708004
Google Scholar
[15]
J. Krames, Die Borel-Bricard-Bewegung mit punktweise gekoppelten orthogonalen Hyper-boloiden (Über symmetrische Schrotungen VI), Mh. Math. Phys. 46 (1937) 172-195.
DOI: 10.1007/bf01792673
Google Scholar
[16]
J.M. Selig, M. Husty, Half-turns and line symmetric motions, Mech. Mach. Theory 46: 2 (2011) 156-167.
DOI: 10.1016/j.mechmachtheory.2010.10.001
Google Scholar
[17]
O. Ma, J. Angeles, Architecture Singularities of Parallel Manipulators, Int. J. Robot. Automat. 7: 1 (1992) 23-29.
Google Scholar
[18]
A. Karger, Architecture singular planar parallel manipulators, Mech. Mach. Theory 38: 11 (2003) 1149-1164.
DOI: 10.1016/s0094-114x(03)00064-8
Google Scholar
[19]
G. Nawratil, On the degenerated cases of architecturally singular planar parallel manipulators, J. Geom. Graphics 12: 2 (2008) 141-149.
Google Scholar
[20]
O. Röschel, S. Mick, Characterisation of architecturally shaky platforms, in: J. Lenarcic, M. Husty (Eds. ), Advances in Robot Kinematics: Analysis and Control, Kluwer, 1998, pp.465-474.
DOI: 10.1007/978-94-015-9064-8_47
Google Scholar
[21]
K. Wohlhart, From higher degrees of shakiness to mobility, Mech. Mach. Theory 45: 3 (2010) 467-476.
DOI: 10.1016/j.mechmachtheory.2009.10.006
Google Scholar
[22]
A. Karger, Architecturally singular non-planar parallel manipulators, Mech. Mach. Theory 43: 3 (2008) 335-346.
DOI: 10.1016/j.mechmachtheory.2007.03.006
Google Scholar
[23]
G. Nawratil, A new approach to the classification of architecturally singular parallel manipulators, in: A. Kecskemethy, A. Müller (Eds. ), Computational Kinematics, Springer, pp.349-358.
DOI: 10.1007/978-3-642-01947-0_43
Google Scholar
[24]
M. Husty, A. Karger, Self-motions of Griffis-Duffy type platforms, Proceedings of IEEE conference on Robotics and Automation, San Francisco, USA, 2000, pp.7-12.
DOI: 10.1109/robot.2000.844032
Google Scholar
[25]
M. Husty, A. Karger, Architecture singular parallel manipulators and their self-motions, in: J. Lenarcic, M.M. Stanisic (Eds. ), Advances in Robot Kinematics, Kluwer, 2000, pp.355-364.
DOI: 10.1007/978-94-011-4120-8_37
Google Scholar
[26]
X. Kong, C. Gosselin, Generation of Architecturally Singular 6-SPS Parallel Manipulators with Linearly Related Planar Platforms, Electronic Journal of Computational Kinematics 1: 1 (2002) 9 pages.
Google Scholar
[27]
A.J. Sommese, C.W. Wampler, Numerical solution of systems of polynomials arising in engineering and science, World Scientific Publishing, Singapore, (2005).
Google Scholar
[28]
M. Husty, P. Zsombor-Murray, A Special Type of Singular Stewart Gough platform, in: J. Lenarcic, B. Ravani (Eds. ), Advances in Robot Kinematics and Computational Geometry, Kluwer, 1994, pp.439-449.
DOI: 10.1007/978-94-015-8348-0_45
Google Scholar
[29]
K. Wohlhart, Architectural Shakiness or Architectural Mobility of Platforms, in: J. Lenarcic, M.M. Stanisic (Eds. ), Advances in Robot Kinematics, Kluwer, 2000, pp.365-374.
DOI: 10.1007/978-94-011-4120-8_38
Google Scholar
[30]
P. Zsombor-Murray, H. Husty, D. Hartmann, Singular Stewart-Gough Platforms with Sphero- cylindrical and Spheroconical Hip Joint Trajectories, Proceedings of 9th IFToMM World Congress on the Theory of Machines and Mechanisms, Milano, Italy, 1995, pp.1886-1890.
Google Scholar
[31]
M. Husty, A. Karger, Self motions of Stewart-Gough platforms: an overview, Proceedings of the workshop on fundamental issues and future research directions for parallel mechanisms and manipulators, Quebec City, Canada, 2002, pp.131-141.
Google Scholar
[32]
A. Karger, Singularities and self-motions of a special type of platforms, in: J. Lenarcic, F. Thomas (Eds. ), Advances in Robot Kinematics: Theory and Applications, Springer, 2002, pp.155-164.
DOI: 10.1007/978-94-017-0657-5_17
Google Scholar
[33]
A. Karger, Singularities and self-motions of equiform platforms, Mech. Mach. Theory 36: 7 (2001) 801-815.
DOI: 10.1016/s0094-114x(01)00027-1
Google Scholar
[34]
A. Karger, Parallel Manipulators with Simple Geometrical Structure, in: M. Ceccarelli (Ed. ), Proceedings of the 2nd European Conference on Mechanism Science, Springer, 2008, pp.463-470.
Google Scholar
[35]
G. Nawratil, Self-motion of TSSM manipulators with two parallel rotary axes, ASME J. Mech. Robot. 3: 3 (2011) 031007.
DOI: 10.1115/1.4004030
Google Scholar
[36]
G. Nawratil, Self-motions of parallel manipulators associated with flexible octahedra, in: M. Hofbaur, M. Husty (Eds. ), Proceedings of the Austrian Robotics Workshop, Hall in Tyrol, Austria, 2011, p.232–248.
Google Scholar
[37]
G. Nawratil, Flexible octahedra in the projective extension of the Euclidean 3-space, J. Geom. Graphics 14: 2 (2010) 147-169.
Google Scholar
[38]
G. Nawratil, A remarkable set of Schönflies-singular planar Stewart Gough platforms, Comput. Aided Geom. Des. 27: 7 (2010) 503-513.
DOI: 10.1016/j.cagd.2010.06.005
Google Scholar
[39]
A. Karger, M. Husty, Classification of all self-motions of the original Stewart-Gough platform, Comput. Aided Des. 30: 3 (1998) 205-215.
DOI: 10.1016/s0010-4485(97)00059-6
Google Scholar
[40]
A. Karger, New Self-Motions of Parallel Manipulators, in: J. Lenarcic, P. Wenger (Eds. ), Advances in Robot Kinematics: Analysis and Design, Springer, 2008, pp.275-282.
DOI: 10.1007/978-1-4020-8600-7_29
Google Scholar
[41]
A. Karger, Self-motions of Stewart-Gough platforms, Comput. Aided Geom. Des. 25: 9 (2008) 775-783.
DOI: 10.1016/j.cagd.2008.09.003
Google Scholar
[42]
F. Geiß, F. -O. Schreyer, A family of exceptional Stewart-Gough mechanisms of genus 7, in: D.J. Bates, G. Besana, S. Di Rocco, C.W. Wampler (Eds. ), Interactions of Classical and Numerical Algebraic Geometry, Contemporary Mathematics 496, American Mathematical Society, 2009, pp.221-234.
DOI: 10.1090/conm/496/09725
Google Scholar
[43]
G. Nawratil, Types of self-motions of planar Stewart Gough platforms: submitted to Meccanica.
DOI: 10.1007/s11012-012-9659-6
Google Scholar
[44]
G. Nawratil, Basic result on type II DM self-motions of planar Stewart Gough platforms, in: E. Ch. Lovasz, B. Corves (Eds. ), Mechanisms, Transmissions and Applications, Springer, 2011, pp.235-244.
DOI: 10.1007/978-94-007-2727-4_21
Google Scholar
[45]
G. Nawratil, Necessary conditions for type II DM self-motions of planar Stewart Gough platform: submitted to special issue Recent Advances in Applied Geometry, of Comput. Aided Geom. Des.
Google Scholar
[46]
G. Nawratil, Stewart Gough platforms with a type II DM self-motion, accepted for publication in J. Geometry.
Google Scholar
[47]
S. Mielczarek, M. Husty, M. Hiller, Designing a redundant Stewart-Gough platform with a maximal forward kinematics solution set, Proceedings of the International Symposium of Multibody Simulation and Mechatronics, Mexico City, Mexico, 2002, 12 pages.
DOI: 10.1007/978-94-017-0657-5_16
Google Scholar
[48]
J. Borras, F. Thomas, C. Torras, Singularity-invariant leg rearrangements in doubly-planar Stewart Gough platforms, Proceedings of Robotics Science and Systems, Zaragoza, Spain, 2010, 8 pages.
DOI: 10.15607/rss.2010.vi.014
Google Scholar
[49]
O. Bottema, B. Roth, Theoretical Kinematics, Series in applied mathematics and mechanics Vol. 24, North-Holland Publishing Company, (1979).
Google Scholar
[50]
M.G. Darboux, Sur les déplacements d'une figure invariable, Comptes Rendus des Séances de l'Académie des Sciences 92 (1881) 118-121.
Google Scholar
[51]
A. Mannheim, Etude d'un déplacement particulier d'une figure de forme invariable, Rendic. Circ. Math. Palermo 3 (1889) 131-144.
DOI: 10.1007/bf03011514
Google Scholar
[52]
G. Nawratil, Self-motions of planar projective Stewart Gough platforms: submitted to Advances in Robot Kinematics, Innsbruck, Austria, (2012).
DOI: 10.1007/978-94-007-4620-6_4
Google Scholar
[53]
A. Karger, Self-motions of 6-3 Stewart-Gough type parallel manipulators, in: J. Lenarcic, M.M. Stanisic (Eds. ), Advances in Robot Kinematics: Motion in Man and Machine, Springer, 2010, pp.359-366.
DOI: 10.1007/978-90-481-9262-5_38
Google Scholar