[1]
W. Khalil, S. Besnard, Geometric Calibration of Robots with Flexible Joints and Links, Journal of Intelligent and Robotic Systems 34 (2002) 357–379.
Google Scholar
[2]
F.T. Paziani, B.D. Giacomo, R.H. Tsunaki, Robot measuring form, Robotics and Computer-Integrated Manufacturing 25 (2009) 168-177.
DOI: 10.1016/j.rcim.2007.11.003
Google Scholar
[3]
A.Y. Elatta, L.P. Gen, F.L. Zhi, Yu Daoyuan and L. Fei, An Overview of Robot Calibration, Information Technology Journal 3 (2004) 74-78.
Google Scholar
[4]
W.K. Veitchegger, and C.H. Wu, Robot accuracy analysis based on kinematics. IEEE J. Robotics and Automation 2 (1986) 171-179.
Google Scholar
[5]
Z. Roth, B. Mooring, B. Ravani, An overview of robot calibration, IEEE Journal of Robotics and Automation 3 (1987) 377-385.
DOI: 10.1109/jra.1987.1087124
Google Scholar
[6]
D.J. Bennett, J.M. Hollerbach, D. Geiger, Autonomous robot calibration for hand-eye coordination, International Journal of Robotics Research 10 (1991) 550-559.
DOI: 10.1177/027836499101000510
Google Scholar
[7]
W. Khalil, E. Dombre, Modeling, identification and control of robots, Hermes Penton, London, (2002).
Google Scholar
[8]
D. Daney, N. Andreff, G. Chabert, Y. Papegay, Interval method for calibration of parallel robots: Vision-based experiments, Mechanism and Machine Theory 41 (2006) 929-944.
DOI: 10.1016/j.mechmachtheory.2006.03.014
Google Scholar
[9]
J. Hollerbach, W. Khalil, M. Gautier, Springer Handbook of robotics, Springer, 2008, Chap. Model identification, pp.321-344.
DOI: 10.1007/978-3-540-30301-5_15
Google Scholar
[10]
Ch. Gong, J. Yuan, J. Ni, Nongeometric error identification and compensation for robotic system by inverse calibration, Int. J. of Machine Tools & Manufacture 40 (2000) 2119–2137.
DOI: 10.1016/s0890-6955(00)00023-7
Google Scholar
[11]
I.C. Bogdan, G. Abba: Identification of the servomechanism used for micro-displacement. IROS (2009) 1986-(1991).
Google Scholar
[12]
A. Pashkevich, A. Klimchik, D. Chablat, Enhanced stiffness modeling of manipulators with passive joints, Mechanism and Machine Theory 46 (2011) 662-679.
DOI: 10.1016/j.mechmachtheory.2010.12.008
Google Scholar
[13]
R. Ramesh, M.A. Mannan, A.N. Poo, Error compensation in machine tools - a review: Part I: geometric, cutting-force induced and fixture-dependent errors, International Journal of Machine Tools and Manufacture 40 (2000) 1235-1256.
DOI: 10.1016/s0890-6955(00)00009-2
Google Scholar
[14]
M. Meggiolaro, S. Dubowsky, C. Mavroidis, Geometric and elastic error calibration of a high accuracy patient positioning system, Mechanism and Machine Theory 40 (2005) 415–427.
DOI: 10.1016/j.mechmachtheory.2004.07.013
Google Scholar
[15]
A. Atkinson, A. Donev, Optimum Experiment Designs. Oxford University Press, (1992).
Google Scholar
[16]
D. Daney, Optimal measurement configurations for Gough platform calibration. Robotics and Automation, ICRA/ IEEE International Conference (2002) 147-152.
DOI: 10.1109/robot.2002.1013353
Google Scholar
[17]
D. Daney, Y. Papegay, B. Madeline, Choosing measurement poses for robot calibration with the local convergence method and Tabu search. The International Journal of Robotics Research 24 (2005) 501-518.
DOI: 10.1177/0278364905053185
Google Scholar
[18]
A. Klimchik, Y. Wu, S. Caro, A. Pashkevich, Design of experiments for calibration of planar anthropomorphic manipulators, AIM (2011) 576-581.
DOI: 10.1109/aim.2011.6027017
Google Scholar
[19]
H. Zhuang, K. Wang, Z.S. Roth, Optimal selection of measurement configurations for robot calibration using simulated annealing, ICRA (1994) 393-398.
DOI: 10.1109/robot.1994.351264
Google Scholar
[20]
W. Khalil, M. Gautier, Ch. Enguehard, Identifiable parameters and optimum configurations for robots calibration. Robotica 9 (1991) 63-70.
DOI: 10.1017/s0263574700015575
Google Scholar
[21]
M.R. Driels1, U.S. Pathre, Significance of observation strategy on the design of robot calibration experiments. Journal of Robotic Systems 7 (1990) 197–223.
DOI: 10.1002/rob.4620070206
Google Scholar
[22]
Yu Sun and J.M. Hollerbach, Observability index selection for robot calibration. Robotics and Automation, ICRA (2008) 831-836.
DOI: 10.1109/robot.2008.4543308
Google Scholar
[23]
A. Nahvi, J.M. Hollerbach, The noise amplification index for optimal pose selection in robot calibration. ICRA (1996) 647-654.
DOI: 10.1109/robot.1996.503848
Google Scholar
[24]
J.H. Borm, C.H. Menq, Determination of optimal measurement configurations for robot calibration based on observability measure. J. of Robotic Systems 10 (1991) 51-63.
DOI: 10.1177/027836499101000106
Google Scholar
[25]
J. Imoto, Y. Takeda, H. Saito, K. Ichiryu, Optimal kinematic calibration of robots based on maximum positioning-error estimation (Theory and application to a parallel-mechanism pipe bender), Proceedings of the 5th Int. Workshop on Computational Kinematics (2009).
DOI: 10.1007/978-3-642-01947-0_17
Google Scholar