Optimal Selection of Measurement Configurations for Stiffness Model Calibration of Anthropomorphic Manipulators

Article Preview

Abstract:

The paper focuses on the calibration of elastostatic parameters of spatial anthropomorphic robots. It proposes a new strategy for optimal selection of the measurement configurations that essentially increases the efficiency of robot calibration. This strategy is based on the concept of the robot test-pose and ensures the best compliance error compensation for the test configuration. The advantages of the proposed approach and its suitability for practical applications are illustrated by numerical examples, which deal with calibration of elastostatic parameters of a 3 degrees of freedom anthropomorphic manipulator with rigid links and compliant actuated joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-170

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Khalil, S. Besnard, Geometric Calibration of Robots with Flexible Joints and Links, Journal of Intelligent and Robotic Systems 34 (2002) 357–379.

Google Scholar

[2] F.T. Paziani, B.D. Giacomo, R.H. Tsunaki, Robot measuring form, Robotics and Computer-Integrated Manufacturing 25 (2009) 168-177.

DOI: 10.1016/j.rcim.2007.11.003

Google Scholar

[3] A.Y. Elatta, L.P. Gen, F.L. Zhi, Yu Daoyuan and L. Fei, An Overview of Robot Calibration, Information Technology Journal 3 (2004) 74-78.

Google Scholar

[4] W.K. Veitchegger, and C.H. Wu, Robot accuracy analysis based on kinematics. IEEE J. Robotics and Automation 2 (1986) 171-179.

Google Scholar

[5] Z. Roth, B. Mooring, B. Ravani, An overview of robot calibration, IEEE Journal of Robotics and Automation 3 (1987) 377-385.

DOI: 10.1109/jra.1987.1087124

Google Scholar

[6] D.J. Bennett, J.M. Hollerbach, D. Geiger, Autonomous robot calibration for hand-eye coordination, International Journal of Robotics Research 10 (1991) 550-559.

DOI: 10.1177/027836499101000510

Google Scholar

[7] W. Khalil, E. Dombre, Modeling, identification and control of robots, Hermes Penton, London, (2002).

Google Scholar

[8] D. Daney, N. Andreff, G. Chabert, Y. Papegay, Interval method for calibration of parallel robots: Vision-based experiments, Mechanism and Machine Theory 41 (2006) 929-944.

DOI: 10.1016/j.mechmachtheory.2006.03.014

Google Scholar

[9] J. Hollerbach, W. Khalil, M. Gautier, Springer Handbook of robotics, Springer, 2008, Chap. Model identification, pp.321-344.

DOI: 10.1007/978-3-540-30301-5_15

Google Scholar

[10] Ch. Gong, J. Yuan, J. Ni, Nongeometric error identification and compensation for robotic system by inverse calibration, Int. J. of Machine Tools & Manufacture 40 (2000) 2119–2137.

DOI: 10.1016/s0890-6955(00)00023-7

Google Scholar

[11] I.C. Bogdan, G. Abba: Identification of the servomechanism used for micro-displacement. IROS (2009) 1986-(1991).

Google Scholar

[12] A. Pashkevich, A. Klimchik, D. Chablat, Enhanced stiffness modeling of manipulators with passive joints, Mechanism and Machine Theory 46 (2011) 662-679.

DOI: 10.1016/j.mechmachtheory.2010.12.008

Google Scholar

[13] R. Ramesh, M.A. Mannan, A.N. Poo, Error compensation in machine tools - a review: Part I: geometric, cutting-force induced and fixture-dependent errors, International Journal of Machine Tools and Manufacture 40 (2000) 1235-1256.

DOI: 10.1016/s0890-6955(00)00009-2

Google Scholar

[14] M. Meggiolaro, S. Dubowsky, C. Mavroidis, Geometric and elastic error calibration of a high accuracy patient positioning system, Mechanism and Machine Theory 40 (2005) 415–427.

DOI: 10.1016/j.mechmachtheory.2004.07.013

Google Scholar

[15] A. Atkinson, A. Donev, Optimum Experiment Designs. Oxford University Press, (1992).

Google Scholar

[16] D. Daney, Optimal measurement configurations for Gough platform calibration. Robotics and Automation, ICRA/ IEEE International Conference (2002) 147-152.

DOI: 10.1109/robot.2002.1013353

Google Scholar

[17] D. Daney, Y. Papegay, B. Madeline, Choosing measurement poses for robot calibration with the local convergence method and Tabu search. The International Journal of Robotics Research 24 (2005) 501-518.

DOI: 10.1177/0278364905053185

Google Scholar

[18] A. Klimchik, Y. Wu, S. Caro, A. Pashkevich, Design of experiments for calibration of planar anthropomorphic manipulators, AIM (2011) 576-581.

DOI: 10.1109/aim.2011.6027017

Google Scholar

[19] H. Zhuang, K. Wang, Z.S. Roth, Optimal selection of measurement configurations for robot calibration using simulated annealing, ICRA (1994) 393-398.

DOI: 10.1109/robot.1994.351264

Google Scholar

[20] W. Khalil, M. Gautier, Ch. Enguehard, Identifiable parameters and optimum configurations for robots calibration. Robotica 9 (1991) 63-70.

DOI: 10.1017/s0263574700015575

Google Scholar

[21] M.R. Driels1, U.S. Pathre, Significance of observation strategy on the design of robot calibration experiments. Journal of Robotic Systems 7 (1990) 197–223.

DOI: 10.1002/rob.4620070206

Google Scholar

[22] Yu Sun and J.M. Hollerbach, Observability index selection for robot calibration. Robotics and Automation, ICRA (2008) 831-836.

DOI: 10.1109/robot.2008.4543308

Google Scholar

[23] A. Nahvi, J.M. Hollerbach, The noise amplification index for optimal pose selection in robot calibration. ICRA (1996) 647-654.

DOI: 10.1109/robot.1996.503848

Google Scholar

[24] J.H. Borm, C.H. Menq, Determination of optimal measurement configurations for robot calibration based on observability measure. J. of Robotic Systems 10 (1991) 51-63.

DOI: 10.1177/027836499101000106

Google Scholar

[25] J. Imoto, Y. Takeda, H. Saito, K. Ichiryu, Optimal kinematic calibration of robots based on maximum positioning-error estimation (Theory and application to a parallel-mechanism pipe bender), Proceedings of the 5th Int. Workshop on Computational Kinematics (2009).

DOI: 10.1007/978-3-642-01947-0_17

Google Scholar