[1]
D. G. Lu, X. P. Li, P. Zhang, et al. Finite Element Reliability Methods for Seismic Fragility Analysis of Civil Engineering Structures. Journal of Basic Science and Engineering, Vol. 14(2006), p.34-- 38 (in Chinese).
Google Scholar
[2]
H. Hwang, J. B. Liu. Seismic Fragility Analysis of Reinforced Concrete Bridges. China Civil Engineering Journal, Vol. 37(2004), pp.47-51 (in Chinese).
Google Scholar
[3]
M. I. J. Schotanus, P. Franchin, A. Lupoi et al. Seismic Fragility Analysis of 3D Structures. Structural Safety, Vol. 26(2004), pp.421-441.
DOI: 10.1016/j.strusafe.2004.03.001
Google Scholar
[4]
J. Park, P. Towashiraporn, J. I. Craig et al. Seismic Fragility Analysis of Low-rise Unreinforced Masonry Structures. Engineering Structures, Vol. 31(2009), pp.125-137.
DOI: 10.1016/j.engstruct.2008.07.021
Google Scholar
[5]
Z. P. Wen, M. T. Gao, F. X. Zhao, et al. Seismic Vulnerability Estimation of the Building Considering Seismic Environment and Local Site Condition. Acta Seismologica Sinica, Vol. 28(2006), pp.277-283 (in Chinese).
DOI: 10.1007/s11589-003-0292-2
Google Scholar
[6]
Z. M. Chang. Nonlinear Seismic Reliability and Fragility Analysis of RC Structures. Harbin Institute of Technology, Harbin (2006).
Google Scholar
[7]
K. R. Karim, F. Yamazaki. Effect of Earthquake Ground Motions on Fragility Curves of Highway Bridge Piers Based on Numerical Simulation. Earthquake Engineering and Structural Dynamics, Vol. 30 (2001), pp.1839-1856.
DOI: 10.1002/eqe.97
Google Scholar
[8]
K. R. Karim, F. Yamazaki. A Simplified Method of Constructing Fragility Curves for Highway Bridges. Earthquake Engineering and Structural Dynamics, Vol. 32(2004), pp.1603-1626.
DOI: 10.1002/eqe.291
Google Scholar
[9]
J. G. Nie, M. X. Tao. Model for Elasto-plastic Analysis of Multistory and Highrise Steel-concrete Composite Frame Systems. Journal of Building Structures, Vol. 31(2010), pp.1-12.
Google Scholar
[10]
A. W. Wegmuller, H. N. Amer. Nonlinear Response of Composite Steel-concrete Bridges. Composite and Structures, Vol. 7(1977), pp.161-169.
DOI: 10.1016/0045-7949(77)90033-5
Google Scholar
[11]
M. J. S. Hirst, M. F. Yeo. The Analysis of Composite Beams Using Standard Finite Element Programs. Composite and Structures, Vol. 11(1980), pp.233-237.
DOI: 10.1016/0045-7949(80)90163-7
Google Scholar
[12]
A. G. Razaqpur, M. Nofal A Finite Element for Modeling the Nonlinear Behavior of Shear Connectors in Composite Structures. Composite and Structures, Vol. 32(1989), pp.169-174.
DOI: 10.1016/0045-7949(89)90082-5
Google Scholar
[13]
Mary Beth D. Hueste, Jong-Wha Bai. Seismic retrofit of a reinforced concrete flat-slab structure: Part II-seismic fragility analysis. Engineering Structures, Vol. 29(2007), pp.1178-1188.
DOI: 10.1016/j.engstruct.2006.07.022
Google Scholar
[14]
Federal Emergency Management Agency (FEMA). FEMA 356 Commentary on the guidelines for the seismic rehabilitation of buildings. Prepared by American Society Of Civil Engineers, Washington, D.C., (2000).
Google Scholar
[15]
Applied Technology Council. ATC-40 Recommended methodology for seismic evaluation and retrofit of existing concrete building. Redwood City, California, (1996).
Google Scholar
[16]
Code for Seismic Design of Buildings (GB50011-2010). China, (2010).
Google Scholar
[17]
J. Wang, Q. X. Wu. Calculation and Sensitive Analysis for Girder Structure Applying for Monte Carlo method. Shanxi Architecture, Vol. 32(2006), pp.46-47 (in Chinese).
Google Scholar