A Novel Coded Excitation Sequence for Ultrasonic Life Location System

Article Preview

Abstract:

A simple and feasible modulation scheme called Continuous Pulse Sequence Width Modulation (CPSWM) is proposed to eliminate the crosstalk among multiple ultrasonic sensors in ultrasonic life location system. To improve the performance of multi-life location system (i.e. sharp autocorrelation and flat cross-correlation characteristics), both the continuous pulse sequence (CPS) width and the duration between two CPSs can be modulated using chaotic, pseudorandom or other methods. The duty cycle of each pulse is fixed to be 50%. To adapt to the intrinsic inertia property of ultrasonic transducers, only central work frequency is used in the CPSWM sequence scheme. The CPSWM scheme only uses digital signal generated by a FPGA processor, no D/A converter is used. The experimental results of ultrasonic multi-life location system consisting of two-channel SensComp 600 series electrostatic sensors with the proposed excitation sequences demonstrate that the ultrasonic multi-life location system with the proposed method can realize multi-life location simultaneously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1110-1114

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. -W. Jörg, M. Berg: Sophisticated mobile robot sonar sensing with pseudo-random codes. Robotics and Autonomous Systems, Vol. 25(3-4), pp.241-251, (1998).

DOI: 10.1016/s0921-8890(98)00053-0

Google Scholar

[2] L. Fortuna, M. Frasca, A. Rizzo: Chaotic pulse position modulation to improve the efficiency of sonar sensors. IEEE Transactions on Instrumentation and Measurement, Vol. 52(6), pp.1809-1814, (2003).

DOI: 10.1109/tim.2003.820452

Google Scholar

[3] J. Ureňa, M. Mazo, J. -J. García, et al: Correlation detector based on a FPGA for ultrasonic sensors. Microprocessors and Microsystems, Vol. 23, pp.25-33, (1999).

DOI: 10.1016/s0141-9331(99)00002-2

Google Scholar

[4] A. Hernández, J. Ureňa, D. Hernanz, et al: Real-time implementation of an Efficient Golay Correlator (EGC) applied to ultrasonic sensorial systems. Microprocessors and Microsystems, Vol. 27, pp.397-406, (2003).

DOI: 10.1016/s0141-9331(03)00061-9

Google Scholar

[5] A. Hernández, J. Ureňa, J. -J. García, et al: Ultrasonic ranging sensor using simultaneous emissions from different transducers. IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control, Vol. 51(12), pp.1660-1670, (2004).

DOI: 10.1109/tuffc.2004.1386683

Google Scholar

[6] M. -A. Benkhelifa, M. Gindre, J. -Y. Huerou, et al: Echography using correlation techniques: choice of coding signal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 41(5), pp.579-587, (1994).

DOI: 10.1109/58.308492

Google Scholar

[7] Z. -X. Ding, P. -A. Payne: A new Golay code system for ultrasonic pulse echo measurements. Measurement Science and Technology, Vol. 1(2), pp.158-165, (1990).

DOI: 10.1088/0957-0233/1/2/010

Google Scholar

[8] Z. -J. Yao, Q. -H. Meng, G. -W. Li, P. Lin: Non-crosstalk real-time ultrasonic range system with optimized chaotic pulse position-width modulation excitation. Proceedings of IEEE Ultrasonics Symposuim, Beijing, November pp.729-732, (2008).

DOI: 10.1109/ultsym.2008.0174

Google Scholar

[9] Q. -H. Meng, S. -Y. Lan, Z. -J. Yao, G. -W. Li: Real-time noncrosstalk sonar system by short optimized pulse position modulation sequences. IEEE Transactions on Instrumentation and Measurement, Vol. 58 (10), pp.3442-3449, (2009).

DOI: 10.1109/tim.2009.2017663

Google Scholar

[10] Q. -H. Meng, Z. -J. Yao, H. -Y. Peng: Improvement of Energy Efficiency via Spectrum Optimization of Excitation Sequence for Multichannel Simultaneously Triggered Airborne Sonar System. Review of Scientific Instruments, Vol. 80 (12), pp.124903-7, (2009).

DOI: 10.1063/1.3272078

Google Scholar

[11] Y. -P. Jiang: On Ulam-von Neumann transformations. Communications in Mathematical Physics, Vol. 172(3), pp.449-59, (1995).

Google Scholar