[1]
M. A. Cohen, S. Grossberg, Absolute stability and global pattern formulation and parallel memory storage by competitive neural networks , IEEE Trans. Syst. Man Cybern, 13: 815-821, (1983).
DOI: 10.1109/tsmc.1983.6313075
Google Scholar
[2]
J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Science of the USA, 2554-2558, (1982).
DOI: 10.1073/pnas.79.8.2554
Google Scholar
[3]
L. O. Chua, L. Yang, Cellular neural networks: Theory, IEEE Trans. on Circuits and Systems: Fundamental Theory and Applications, 35(10): 1257-1272, (1988).
DOI: 10.1109/31.7600
Google Scholar
[4]
S. Kosko, Bidirectional associative memories, IEEE Trans. on Systems, Man, and Cybernetics, 18: 49-60, (1988).
DOI: 10.1109/21.87054
Google Scholar
[5]
Z. S. Wang, Stability of continuous time recurrent neural networks with delays, Northeastern University Press, Shenyang, Chinese, (2007).
Google Scholar
[6]
R. Zhang, Y. W. Jing, Z. S. Wang. Global exponential stability of Cohen-Grossberg neural networks with time varying delays, Proc of the IEEE Chinese Control and Decision Conference, ThCIS-1-13: 3192-3197, (2009).
DOI: 10.1109/ccdc.2009.5192316
Google Scholar
[7]
S. Y. Xu, J. Lam, D. W. C. Ho, Novel global robust stability criteria for interval neural networks with multiple time-varying delays, Phys Lett A , 342(4): 322-330, (2005).
DOI: 10.1016/j.physleta.2005.05.016
Google Scholar
[8]
C. H. Lien, K. W. Yu, Y. F. Lin, H. C. Chang. Y. J. Chung, Stability analysis for Cohen-Grossberg neural networks with time-varying delays via LMI approach, Expert Systems with Applications, 38: 6360-6367, (2011).
DOI: 10.1016/j.eswa.2010.11.103
Google Scholar
[9]
C. J. Fu, D. H. Li, H. Tong, New LMI-based criteria for global robust stability of Cohen-Grossberg neural networks with time-varying delays, ISNN 2011-8th International Symposium on Neural Networks, Part I: 348-357, (2011).
DOI: 10.1007/978-3-642-21105-8_41
Google Scholar
[10]
T. P. Chen, L. B. Rong, Robust global exponential stability of Cohen-Grossberg neural networks with time delays . IEEE Transactions on Neural Networks, 15: 203-206, (2004).
DOI: 10.1109/tnn.2003.822974
Google Scholar
[11]
L. B. Rong, LMI-based criteria for robust stability of Cohen-Grossberg neural networks with delay. Physics Letters A, 339: 63-73, (2005).
DOI: 10.1016/j.physleta.2005.03.023
Google Scholar
[12]
C. Ji, H. G. Zhang, Y. Wei, LMI approach for global robust stability of Cohen-Grossberg neural networks with multiple delays. Neurocomputing, 71: 475-485, (2008).
DOI: 10.1016/j.neucom.2007.07.014
Google Scholar
[13]
M. Gao, B. T. Cui, Robust exponential stability of interval Cohen-Grossberg neural networks with time-varying delays . Chaos, Solitons and Fractals, 40(4): 1914-1928, (2009).
DOI: 10.1016/j.chaos.2007.09.072
Google Scholar
[14]
G. Hardy, J. Littlewood, G. Polya, Inequality, Cambridge University Press, United Kingdom, (2004).
Google Scholar