The Control of Attached Acid Groups on Sulfonated Polystyrene Nanospheres through the Design of Material Structure

Article Preview

Abstract:

Linearlinking polystyrene nanospheres (LPSs) with uniform size dispersion were synthesized by the emulsifier-free emulsion polymerization method. And with the adding of divinylbenzene (DVB) crosslinking polystyrene nanospheres (CPSs) was also prepared. It was found out that the partical size of prepared nanospheres changed with the continuous increment of added DVB. The sulfonation of resultant polystyrene nanospheres yielded solids with sulfonic acid groups. The relationship between nanospheres material structure and attached acid groups was investigated in detail. It was observed that the amount of added DVB is the main factor which can affect the amount and thermal stability of attached sulfonic acid groups. The catalytic performance of resultant solid acid catalysts was evaluated through the esterification reaction of methanol with acetic acid. Moreover, the prepared sulfonated polystyrene nanospheres show higher acetic acid conversion than the commercial one, therefore the sulfonated nanospheres could be an excellent potential replacement for liquid acid catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-231

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Das, J. Lee and S. Cheng: J. Catal. Vol. 223 (2004), p.152.

Google Scholar

[2] A.S. Dias, M. Pillinger and A.A. Valente: J. Catal. Vol. 229 (2005), p.414.

Google Scholar

[3] D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka and G.G. Stucky: Chem. Mater. Vol. 12 (2000), p.2448.

Google Scholar

[4] J.A. Melero, R.V. Grieken, G. Morales and V. Nuño: Catal. Commu. Vol. 5 (2004), p.131.

Google Scholar

[5] T. Okuhara: Chem. Rev. Vol. 102 (2002), p.3641.

Google Scholar

[6] S. Inagaki, S. Guan, T. Ohsuna and O. Terasaki: Nature Vol. 416 (2002), p.304.

Google Scholar

[7] E. Cano-Serrano, J.M. Campos-Martin and J. L.G. Fierro: Chem. Commun. Vol. 2 (2003), p.246.

Google Scholar

[8] Q. Yang, M.P. Kappor, N. Shirokura, M. Ohashi, S. Inagaki, J.N. Kondo and K. Domen: J. Mater. Chem. Vol. 15 (2005), p.666.

Google Scholar

[9] Q. Yang, M.P. Kappor and S. Inagaki: J. Am. Chem. Soc. Vol. 124 (2002), p.9694.

Google Scholar

[10] M. Hara, T. Yoshida, A. Takagaki, T.I. Takata, J.N. Kondo, S. Hayashi and K. Domen: Angew. Chem. Int. Ed. Vol. 43 (2004), p.2955.

DOI: 10.1002/anie.200453947

Google Scholar

[11] F. Peng, L. Zhang, H. Wang, P. Lv and H. Yu: Carbon Vol. 43 (2005), p.2405.

Google Scholar

[12] S. limura, K. Manabe and S. Kobayashi: Organic Letters Vol. 5 (2003), p.101.

Google Scholar

[13] M. Hart, G. Fuller, D.R. Brown, J.A. Dale and S. Plant: J. Mol. Catal A: Chem. Vol. 182-183 (2002), p.439.

Google Scholar

[14] M. Hart, G. Fuller, D. Brown, C. Park, M.A. Keane, J.A. Dale, C.M. Fougret and R.W. Cockman: Catalysis Letters Vol. 72 (2001), p.135.

DOI: 10.1023/a:1009032027366

Google Scholar

[15] K. Manabe and S. Kobayashi: Adv. Synth. Catal. Vol. 344 (2002), p.270.

Google Scholar

[16] L. Wang, Q. Yan and X.S. Zhao: Langmuir Vol. 22 (2006), p.3481.

Google Scholar

[17] J.M. Aragon, J.M. R Vegas and L.G. Jodra: Ind. Eng. Chem. Res. Vol. 33 (1994), p.592.

Google Scholar

[18] L. Petrus, E.J. Stamhuls and G.E.H. Joosten: Ind. Eng. Chem. Prod. Res. Dev. Vol. 20 (1981), p.366.

Google Scholar

[19] X. Tian, F. Su and X.S. Zhao: Green. Chem. Vol. 10 (2008), p.951.

Google Scholar

[20] C.R. Martins, F. Hallwass, Y.M. B De-Almeida and M.A. De-Paoli: Ann. Magn. Reson. Vol. 6 (2007), p.46.

Google Scholar

[21] M.J. Canovas, I. Sobrados, J. Sanz, J.L. Acosta and A. Linares: J. Membrane. Sci. Vol. 280 (2006), p.461.

Google Scholar

[22] B. Bae, H.Y. Ha and D. Kim: J. Membrane. Sci. Vol. 276 (2006), p.51.

Google Scholar

[23] H. Mahdioub, S. Roualdes, P. Sistat, N. Pradeilles, J. Durand and G. Pourcelly: Fuel Cells Vol. 5 (2005), p.277.

Google Scholar

[24] M. Okamura, A. Ahagaki, M. Toda, J.N. Kondo, K. Domen, T. Tatsumi, M. Hara and S. Hayashi: Chem. Mater. Vol. 18 (2006), p.3039.

Google Scholar

[25] Z. Ding, S. Ma, D. Kriz, J.J. Aklonis and R. Salovey: J. Polym. Sci. B Polym. Phys. Vol. 30 (1992), p.1189.

DOI: 10.1002/polb.1992.090301102

Google Scholar

[26] Y. Gao, G.P. Robertson, M.D. Guiver, X. Jian, S.D. Mikhailenko, K. Wang and S. Kaliaguine: J. Membrane. Sci. Vol. 227 (2003), p.39.

Google Scholar

[27] X. Mo, D.E. Lopez, K. Suwannakarn, Y. Liu, E. Lotero, J.G. G Jr and C. Lu: J. Catal. Vol. 254 (2008), p.332.

Google Scholar